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Trrn DrecoNAL AncuMENr

Pnrvrnw

Infinity is the lifeblood of mathematics, because there is no end to even
the simplest mathematical objects-the positive integers L,2, 3, 4, 5, 6,

7, . . . . One of the oldest and best arguments about infinity is Euclid's
proof that the prime numbers 2, 3, 5, 7, L'I-., L3, . .. form an infinite se-

quence. Euclid succeeds despite knowing virtually nothing about the
sequence, by showing instead that any finite sequence of primes is in-
complete. That is, he shows how to find a prime p different from any
given primes py pz,. . .,pn.

A set like the prime numbers is called countably infinite because we
can order its members in a list with a first member, second member,
third member, and so on. As Euclid showed, the list is infinite, but each
member appears at some finite position, and hence gets "counted."

Countably infinite sets have always been with us, and indeed it is
hard to grasp infinity in any way other than by counting. But in 1.874 the
German mathematician Georg Cantor showed that infinity is more com-
plicated than previously thought, by showing that the set of real numbers
is uncountable. He did this in a way reminiscent of Euclid's proof, but one
level higher, by showing that any countably infinite list of real numbers
is incomplete.

Cantor's method finds a real number x different from any on a given
countable list x1, xz,xz,. .. by what is now called the diagonal argument,
for reasons that will become clear below. The diagonal argument (which
comes in several variations) is logically the simplest way to prove the
existence of uncountable sets. It is the first "road to infinity" of our title,
so we devote this chapter to it. A second road-via t}ite ordinals-was also
discovered by Cantor, and it will be discussed in Chapter 2.
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1.1 CouxrrNc AND CoumraBrlrrY

1. Trrr DracoNer AncuurNr

If I should ask further how many squares there are, one might reply truly that
there are as many as the corresponding number of roots, since every square
has its own root and every root has its own square/ while no square has more
than one root and no root more than one square' 

-Galileo 
Gal,ei,

Dialogues Concerning the Two New Sciences, First day.

The process of counting 1, 2,3, 4,. . . is the simplest and clearest example
of an infinite process. We know that counting never ends, because there
is no last number, and indeed one/s first thought is that "infinite" and
"neverending" mean the same thing. Yet, in a sense, the endless count-
ing process exhausts the set {L,2,3,4,. . .} of positive integers, because

each positive integer is eventually reached. This distinguishes the set of
positive integers from other sets-such as the set of points on a line-
which seemingly cannot be "exhausted by counting." Thus it may be

enlightening to dwell a little longer on the process of counting, and to
survey some of the infinite sets that can be exhausted by counting their
members.

First, what do we mean by "counthg" u set of objects? "Counting"
objects is the same as arranging them in a (possibly infinite) lisf-first
object, second object, third object, and so on-so that each object in the

given set appears on the list, necessarily at some positive integer Posi-
tion. For example, if we "count" the squares by listing them in increasing
order,

1., 4, 9, 1-,6, 25, 36, 49, 64, 81,, t00, 121, 1,44, L69, 196, 225, ...,

then the square 900 appears at position 30 on the list. Listing a set is
mathematically the same as assigning the positive integers in some way
to its members, but it is often easier to visualize the list than to work out
the exact integer assigned to each member.

One of the first interesting things to be noticed about infinite sets

is that counting a part may be " just as infinite" as counting the whole. For
example, the set of. positiae eaen numbers 2, 4, 6, 8, . . . is just a part of
the set of positive integers. But the positive even numbers (in increasing
order) form a list that matches the list of Positive integers completely,
item by item. Here they are:

34567
68101214

10 11 12 13
20 22 24 26

Thus listing the positive even numbers is a process completely paral-
lel to the process of listing the positive integers. The reason lies in the

12
24

89
16 18
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item-by-item matching of the two lists, which we call a one-to-one cor-

respondence. The function f (n) : 2n encapsulates this correspondence,
because it matches each positive integer r with exactly one positive even
number 2n, and each positive even number 2n is matched with exactly
one positive integer n.

So, to echo the example of Galileo quoted at the beginning of this
section: if I should ask how many even numbers there are, one might
reply truly that there are as many as the corresPonding positive integers.

In both Galileo's example, and my more simple-minded one, one sees a

one-to-one correspondence between the set of positive integers and a part
of itself. This unsettling property is the first characteristic of the world of
infinite sets.

CouurlrlY INFINTTE SETS

A set whose members can be put in an infinite list-that is, in one-to-

one correspondence with the positive integers-is called countably inJinite.

This common property of countably infinite sets was called theh cardinal-

ity by Georg Cantor, who initiated the general study of sets in the 1870s.

tn ttre .ur" of finite sets, two sets have the same cardinality if and only if
they have the same number of elements. So the concept of cardinality is

essentially the same as the concept of number for finite sets.

For countably infinite sets, the common cardinality can also be re-

garded as the "number" of elements. This "number" was called a transfi-

iiteiumber and denoted N6 ("aleph zero" or "aleph nought") by Cantor.

One can say, for instance, that there are N6 positive integers. However,

one has to bear in mind that Ns is more elastic than an ordinary number.

The sets {L,2,3,4,...} and {2,4,6,8,.. .} both have cardinality N6, €V€o

though the second set is a strict subset of the first. So one can also say

that there are Ng even numbers.
Moreover, the cardinality Ns stretches to cover sets that at first glance

seem much larger than the set {1,2,3,4,...). Consider the set of dots

shown in Figure 1.1. The grid has infinitely many infinite rows of dots,

but nevertheless we can pair each dot with a different positive integer as

shown in the figure. Simply view the dots along a series of finite diagonal
lines, and "count" along the successive diagonals, starting in the bottom
left corner.

There is a very similar proof that the set of (positive) fractions is count-
able, since each fraction m/n corresponds to the pair (*,r) of positive
integers. It follows that the set of positive rational numbers is countable,

since each positive rational number is given by a fraction. Admittedly,
there are many fractions for the same number-for example the number
1/2 is also given by the fractions 2/4,3/6,4/8, and so on-but we can
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Figure 1.L. Counting the dots in an infinite grid.

list the Positive rational numbers by going through the list of fractions
and omitting aIl fractions that represent previous numbers on the lisi.

7.2 Dons ONn INrrNrr n Stzn Frr Arri
A nice way to illustrate the elasticity of the cardinality N6 was introduced
by the physicist George Gamow (1947) in his book One, Two, Three, . ..,
lnfinity. Gamow imagines a hotel, called Hilbert's hotel, in which there are
infinitely many rooms, numbered 1.,2,3, 4, ... . Listing the members of
an infinite set is the same as accofirmodating the members as "guests" in
Hilbert's hotel, one to each room.

The positive integers can naturally be accommodated by putting each
number r in room n (Figure 1.2):

Figure 1.2. Standard occupancy of Hilbert's hotel.

The N6 positive integers fill every room in Hilbert's hotel, so we might
say that N6 is the "size" of Hilbert's hotel, and that occupancy by more
than N6 persons is unlawful. Nevertheless there is room for one more
(say, the number 0). Each guest simply needs to move up one room,
leaving the first room free (Figure 1.3):
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Figure 1.3. Making room for one more.

Thus N6 can always stretch to include one more: in symbols, N6 f 1 :
N6. In fact, there is room for another countable infinity of "guests" (sdf,
the negative integers -1, -2, -3,. . .). The guest in roorn n carr move to
room 2n,Ieaving all the odd numbered rooms free (Figure 1.4):

Figure 1.4. Making room for a countable infinity more.

In symbols: Ns * No : No.

There is even room for a countable infinity of countable infinities of
guests. Suppose, say, that the guests arrive on infinite buses numbered 1,
2,3, 4, ..., and that each bus has guests numbered '1.,2, 3, 4 , ... . The
guests in bus 1 can be accommodated as follows:

put guest 1 in room L; then skip 1 room; that is,

put guest 2 in room 3; then skip 2 rooms; that is,

put guest 3 in room 6; then skip 3 rooms; that is,

put guest 4 in room 10; then skip 4 rooms; ...

Thus the first bus fills the rooms shown in Figure L.5:

Figure 1.5. Making room for a countable infinity of countable infinities.

After the first bus has been unloaded, the unoccupied rooms are in
blocks of L,2,3,4, ... rooms, so we can unload the second bus by putting
its guests in the leftmost room of each block. After that, the unoccupied
rooms are again in blocks of 1, 2, 3, 4, ... rooms, so we can repeat the
process with the third bus, and so on. (You may notice that each busload
occupies a sequence of rooms numbered the same as a row in Figure 1.1.)

The result is that the whole series of Ns busloads, each with N6 guests,
can be packed into Hilbert's hotel-with exactly one guest per room. In
symbols: N6 x N6 - Ne.

1 2 3 4 5 6 7 8 9 10 11 1,2 13 74 15 16 17 18 L9

1 2 3 4 5 6 7 8 9 10

5
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The equations of "cardinal arithmetic" just obtained,

No*L:N0,
No*No:No,
NsxNs:N0,

show just how elastic the transfinite number N6 is. So much so, one
begins to suspect that cardinal arithmetic has nothing to say except that
any infinite set has cardinality N6. And if all transfinite numbers are the
same it is surely a waste of time to talk about them. But fortunately
they are not all the same. In particular, the set of points on the line has
cardinality strictly larger than Ns. Cantor discovered this difference in
1.874, opening a crack in the world of the infinite from which unexpected
consequences have spilled ever since. There is, after all, a lot to say about
infinity, and the purpose of this book is to explain why.

1.3 CaNron's DracoNAL AncuvrENT

Before studying the set of points on the line, we look at a related ,"t tnut
is slightly easier to handle: the set of all sets of positive integers. A set S

of positive integers can be described by an infinite sequence of 0s and 1s,

with 1 in the nth place just in case n is a member of S. Table 1.1 shows a

few examples:

subset t234567897011
even n

squares
rlmes

01
10
01

0
1.

10101010
10000L00
01010001

Table 1.1. Descriptions of positive integer sets.

Now suppose that we have Ns sets of positive integers. That means
we can form a list of the sets, 51, S2,Sg,. . ., whose nth member Sn is the
set paired with integer n. We show that such a list can never include
all sets of positive integers by describing a set S different from each of
St,Sz,Sg,... .

This is easy: for each number n, put n in S just in case n is not in
Sn. lt follows that S differs from each Sn rpith respect to the number n: if n
is Sn, then n is not in S; if n is not Sn, then n is in S. Thus S is not on the
list 51,52,53,... , and hence no such list can include all sets of positive
integers.
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subsetll 2 3 4 567891011

17 0111010 0

Table 1.2. The diagonal argument.

The argument we have just made is called a diagonal argument be-
cause it can be presented visually as follows. Imagine an infinite ta-
ble whose rows encode the sets St,Sz,Sz,... as sequences of 0s and
1s, as in the examples above. We might have, say, the sets shown in
Table 1.2.

The digit (1 or 0) that signals whether or not r belongs to S4 is set in
hold type, giving a diagonal sequence of bold digits

00100010110. . . .

The sequence for S is obtained by switching each digit in the diagonal
sequence. Hence the sequence for S is necessarily different from the
sequences for all of 51, Sz, Sz, . . ..

The cardinality of the set of all sequences of 0s and 1s is called 2No.

We use this symbol because there are two possibilities for the first digit
in the sequence, two possibilities for the second digit, two possibilities
for the third, and so on, for all the N6 digits in the sequence. Thus it
is reasonable to say that there are2x2x2x... (No factors) possible
sequences of 0s and 1s, and hence there are 2No sets of positive nafural
numbers.

The diagonal argument shows that 2\o is strictly greater than lts because
there is a one-to-one correspondence between the positive integers and
certain sets of positive integers, but not wlt}:. all such sets. As we have
just seen, if the numbers L, 2, 3, 4, . . . are assigned to sets St, Sz,53, 54, . . .

there will always be a set (such as S) that fails to be assigned a number.

S1

S2

S3

Sa

S5

S5

S7

Ss

Se

sro
Srr

0101010101
1001000010
0110101000
1010101010
0010010010
1101101101
1111111111
0000000000
0000000010
1001001001
0100100100

0

1

1

0

t
t
0

0

0

0
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Tllr Locrc oF THE Dracoxar Ancuvrrivr
M*y mathematicians aggressively maintain that there can be no
doubt of the validity of this proof, whereas others do not admit it. I
personally c,annot see an iota of appeal in this proof . . . my mind will
not do the things that it is obviously expectedto do if this is indeed
a proof.

-P.W. Bridgman (1955), p. 101

P. W. Bridgman was an experimental physicist at Harvard, and winner of
the Nobel prize for physics rn1946. He was also, in all probability, one of
the smartest people not to understand the diagonal argument. If you had
any trouble with the argument above, /ou can rest assured that a Nobel
prize winner was equally troubled. On the other hand, I do not think
that any mathematically experienced reader should have trouble with the
diagonal argument. Here is why.

The logic of the diagonal argument is really very similar to that of
Euclid's proof that there are infinitely many primes. Euclid faced the
difficulty that the totality of primes is hard to comprehend, since they
follow no apparent pattern. So, he avoided even considering the totality
of primes by arguing instead that any finite list of primes is incomplete...

Given a finite list of primes pt, pz, . . . , pn, one forms the number

N:ptpr...pn*1.,

which is obviously not divisible by any one of py pz, . . . ,p, (they each
leave remainder 1). But N is divisible by some prirne number, so the list
Pt,Pz,.. .,Pn of primes is incomplete. Moreover, we can find a specific
prime p not on the list by finding the smallest number ) 2 that divides N.

An uncountable set is likewise very hard to comprehend, so we avoid
doing so and instead suppose that we are given a countable list St,Sz,
5g,... of members of the set. The word "given" may be interpreted as
strictly as you like. For example, if S1,Sz,SZ,... are sequences of 0s and
1s, you may demand a rule that gives the rrth digit of S, at stage m * n.
The diagonal argument still works, and it gives a completely specific S not
on the given list. (Indeed, it also leads to some interesting conclusions
about rules for computing sequences, as we will see in Chapter 3.)

Tnr Snr oF PorNrs oN THE LrNE

The goal of set theory is to answer the question of highest importance: whether
one can view the line in an atomistic manner, as a set of points.

-Nikolai 
Ll.rn (1930), p.2.

By the "lir.e" we mean the number line, whose "points" are known as the
real numbers. Each real number has a decimal expansion with an infinite

II
8
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sequence of decimal digits after the decimal point. For example,

n : 3.14159265358979323846 . . ..

If we stick to real numbers between 0 and L, then each number is given
by the sequence of digits after the decimal point, each term of which is
one of 0, 1-, 2, 3, 4, 5, 6, 7, 8, or 9. A countable infinity of real numbers
x1., xz, x3, x4,. . . between 0 and 1 can therefore be encoded by a table very
like the table we used to encode a countable infinity of sets of positive
integers. Likewise, we can construct a real number x dffirent from each
of x1,x2,xs,x4,... by arranging that the nth digit of r is different from
the nth digit of xn, for each positive integer n. As before, this amounts
to looking at the diagonal digits in the table, and changing each one of
them.

However, there is now a slight problem with the diagonal construc-
tion. Changing each diagonal digit certainly produces a sequence of
digits different from all the sequences given for x1,x2,x3,x4,... . But
this does not ensure that the new sequence represents a new number. It
could happen, for example, that the sequence obtained by the diagonal
construction is

0 .49999999999999.- .

and that one of the given sequences is

11 : 0'50000000000000 "'
T["r" are different sequences, but they represent the same number, namely
l/2. Since two sequences can represent the same number only if one of
them ends in an infinite sequence of 9s, we can avoid this problem by
never changing a diagonal digit to a 0 or a 9. For example, we could use
the following rule.

If the nth digit of xn is 1, let the nth digit of xbe 2.

If the nth digit of x,2 is not L, let the nth digit of x be 1.

With this rule, x does not merely have a sequence of digits different
from those for x1,x2,x3,.. . . As anumber, r is different from x1.,x2,x3,. .. .

Thus we have proved that the set of real numbers is of greater cardinality
than the set of positioe natural numbers. If we make a list of real numbers
x.t.,x2,x3,x4,... there will always be a real number (such as r) not on the
list.

In fact, the set of real numbers (whether between 0 and 1 or over the
whole number line) has cardinality 2No-the same as that of the set of
sequences of 0s and Ls. The cardinality 2No, like N6, measures he "size"
among familiar sets in mathematics. The reasons for this will become
clearer as we explore further examples of countable and uncountable sets.
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1. Tsr Dracorrrar AncuunNr

[On the question whether the real numbers can be made to correspond with
the natural numbers]. . . if it could be answered with no, then one would have
a new proof of Liouville's theorem that there are transcendental numbers.

-Ceorg Cantor,
Letter to Dedekind2,Si;;ilHl3li:

Cantor's discovery of uncountable sets in 1874was one of the most un-
expected events in the history of mathematics. Before 1874, infinity was
not even considered a legitimate mathematical concept by most people,
so the need to distinguish between countable and uncountable infinities
could not have been imagined. The idea of uncountability was just foo
original to be appreciated by most mathematicians. Because of this, Can-
tor downplayed the idea of uncountability in the published version of his
discovery, introducing it only indirectly via a "property of the algebraic
numbers."

The algebraic numbers were very familiar to l9th-century mathemati-
cians. A number x is called algebraic if it satisfies a polynomial equation
with integer coefficients, that is, an equation of the form o-

arxn * ar-1x'-1 + . . . * a1x * ao : 0,

where a0, al, . . . , an-1, an are integers.

The algebraic numbers include all the rational numbers m/n, where m

and n are integers, and also many irrational numbers, such as tfZ, rt,
{2, and so on. In fact, it is quite hard to find any numbers that are
not algebraic. The first example was found by the French mathemati-
cian ]oseph Liouville in 1.844, using a result that says (roughly speaking)
that an irrational algebraic number cannot be closely approximated by
rationals.

Liouville then considered the number

r : 0 . 101001000000100000000000000000000000010 . . .,

where the successive blocks of 0s have lengths L, 2,3 x 2, 4 x 3 x 2, .. . .

He showed that x is irrational but that it can be closely approximated by
rationals, hence x is not algebraic. Such numbers are now called transcen-
dental, because they transcend description by algebraic means. Invariably,
they have to be described by infinite processes, such as infinite decimals
or infinite series. The first "well-known" number to be proved transcen-
dental was

111e:r-T- 1xz-r"x2x3- 1,x2x3x4 *... ,

t t_l
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a number which makes many appearances in mathematics, perhaps most
famously in the equation

ert/4- _1.

Liouville's compatriot Charles Hermite proved that e is transcendental in
T873, using some difficult calculus. In fact, Hermite was so exhausted by
the effort that he gave up the idea of trying to prove that n is transcen-
dental. The transcendance of z was first proved by the German math-
ematician Ferdinand Lindemann tn L882, using Hermite's methods and
the above equation connecting e and r.

At any rate, in 1874 the only known approaches to transcendental
numbers were those of Liouville and Hermite, using sophisticated alge-
bra and calculus. Cantor surprised the world by showing the existence
of transcendental numbers without any advanced math at all-simply
by proving that the set of algebraic numbers is countable. Combining this
with his result that real numbers are uncountable, it follows that some
real numbers are transcendental. In fact, "most" real numbers must be
transcendental. Not only does set theory find transcendental numbers
easily, it also shows that the handful of transcendental numbers previ-
ously known actually belong to the vast, uncountable, majority.

Since we have already seen one of Cantor's proofs that there are un-
countably many reals, it remains to explain why there are only countably
many algebraic numbers. To do this we come back to the equations that

''tlefine algebraic numbers:

anxn I an-txn-l+''' * a1x -f a.g : O, (1)

where a0,a1.,...,an-L,an are integers. The equation (1) has at most z
solutions, as one learns in elementary algebra, so we can list all algebraic
numbers if we can list all equations of the form (1). To do this, Cantor
used a quantity called the height of the equation,

h : la,l * lo"_tl + . . . -l laol + r,

suggested by his colleague Richard Dedekind. It is not hard to see that
there are only finitely many equations with a giaen height h, since they nec-
essarily have degree n I h and each coefficient has absolute value less
than h. Therefore, we can list all equations (and hence all algebraic num-
bers) by first listing the equations of height L, then those of height 2, those
of height 3, and so on.

This listing process shows that the algebraic numbers form a count-
able set, and hence we are done.

1T
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1.5 OrHun UucouurABrr,rry Pnoors

1. THE Dr^c.coNar Ancurvrrrtr

we have not described Cantor's first uncountability proof, from 1.gz4,be-
cause it is more complicated than his diagonal proof, which dates from
1891. The logic of the 7874 proof is basically the same-a countable set
of numbers does not include all numbers because we can always find a
number outside it-but the construction of the outsider x is not obviously
"diagortal." Rather, x is a least upper bound of a certain increasing se-
quence of numbets x1, xz, x3, x4, . . .) that is, x is the least number greater
than all of x1,x2,x3,x4,.... However, the least upper bound begins to
look "diagonal" when one studies the decimal digits of x1, x2, xg, x4, . . . .

Suppose, for the sake of example, that the numbers x1.,x2,x3,x4,...
have the following decimal digits:

h:1.413...
xz:1.41.47...
xz:1.41.4232. . .

xs:1.414235627
xs: I.4742356295.'..

xo:1.4142356237 ...

:

Because x1 I x2 I \ I . ' ., each decimal r,11 agrees with its predeces-
sor .r, up to a certain digit, and x;11 has a larger digit than x; at the first
place where they disagree. These digits of first disagreement (shown in
bold type) form a "jagged diagonal." And the least upper bound x of the
sequence xt,xz,x3,x4,... is obtained by uniting all the decimal segments
up to this "diagonal":

x :'1,.41.42356237 . . ..

Thus there is a sense in which Cantor's original uncountability proof
involves a diagonal construction.

The same is true of a remarkable proof discovered by the German
mathematician Axel Harnack in 1885, using the concept of measure. Sup-
pose that a.t,a2,a2,a4,... is any list of real numbers. Harnack observes
that we can cover all of these numbers by line segments of total length as
small as we please, say €. Just take a line segment of length e, break it in
half, and use a segment of length e/2 to cover the number a1. Then break
the remaining segment of length e/2 tn half and use a segment of length
e / 4 to cover a2, and so on. Thus we cover

t_t

l

I

l

I

l
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e/8

13

e/2 e/4 e/16

a4fi2a1a3

Figure 1.6. Harnack's covering of a countable set.

a.tby an interval of length e/2,
a2by an interval of length e/ 4,
azby an interval of length e/8,

a4by an interval of length e/16,

as shown in Figure 1.6. And tlr, *lrot|, infinite list a1, a2, a3, a4, . . . is coaered

by line segments of total length at most e.

It follows that the numbers a1.,a2,a2,a4,... do not include all real
numbers. In fact, far from filling the whole line, the set of numbers
a1., a2, a3, a4,. . . has total length zerot Thus no list exhausts the set of real
numbers, or even comes close. This proof shows more dramatically why
there are uncountably many real numbers, but it does not seem to yield
any particular nurnber not in the given list a1,a2,a3,a4,.... This defect
is easily fixed, by none other than the diagonal construction. (It is also

convenient to modify the lengths of the covering intervals in order to suit
decimal notation.)

Suppose that the numbers a1.,a2,a3,a4,... are given as infinite deci-
mals, say

a1.:L'73205"',
az : 0' LLL11 " ',
a3 :3'1'4159 ' ",
a4:0'99999"',

:

If we cover at by an interval of length 1/10 then numbers r that differ
from a1 in the first decimal place by at least 2 are definitely outside the first
covering interval. We can change the first digit in al to 5, for example, so

x : 0.5. . . is outside the first interval. Next, if we cover azby an interval
of length L/1.00, then numbers x that differ from a2 in the second decimal
place by at least 2 are definitely outside the second covering interval. For
example, we could change the second digit rn az to 3, so x : 0' 53. . .
is outside the first and second intervals. Similarly, if we cover a3 by an
interval of length L/1,000, then x : 0.533... is outside the first, second,
and third intervals.
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It is clear that we can continue in this way to cover each real number
a"by an interval of length !/1.0n, and at the same time find a number
x outside all the intervals by choosing the zth digit of x to be suitably
different from the nth digit of ar. This is clearly, diagonul construction.

Thus it may be that Cantor distilled the diagonal algument from pre-
vious uncountability proofs. Indeed, a more explicitly "diagonal,, ion-
struction had already been described n 1,87s by another German math-
ematician with an interest in the infinite, Paul du Bois-Reymond. we
discuss his work in the next section.

1,.6 Ranrs oF GRowrH

From ancient times, when Archimedes tried to estimate the number of
grains of sand in the universe, until today, when "exponential growth"
has become a clich6, people have been fascinated by large numblrs and
rapid rates of growth. With modern mathematical notation it is quite
easy to describe functions or sequences with extravagant growth and,
with somewhat greater difficulty, to compare growth rates of differe-nt
functions. - ''

For example, the function f (n) : n, whose sequence of values is

')., 2, 3, 4, 5, 6, ...,'
is a function that grows beyond all bounds. But it does not grow as fast
as the function g(n) : n2, whose values form the seque.,." oT squares:

1., 4, g, 1,6, 25, 36,

We can see why by looking at g(n) / f (") : n,which itself grows beyond
all bounds, or tends to infinity, as we usually say. In general, let us agree
to say that a function G(n) grows faster than a function F(n) it G(n) / F(n)
tends to infinity. We write this relationship symbolically as

G(n) /f (") -+ * as n -+ @.

It follows immediately that n3 grows faster than n2, n4 grows faster than
n3, artd so on. Thus the infinite family of function"\n,n2,n3,n4,...\
represents a family of growth rates with no greatest member. It is called
the family of. polynomial growth rates.

Although there is no greatest polynomial rate of growth, there is
a growth rate greater than all polynomial rates. Consider, for example,
the growth rate of the function?n. This function has exponential growth,
and it grows faster than nk for any fixed k. we shall not pause to prove
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this fact, because there is another function that beats all of fr,fr2,fr3,fiA, . . .

more obviously; namely, the function

d(n) : n" '

It is clear that

nn>n2 forallfl)2,
nn>n3 foralln)3,
nn>n4 forallfr)4,

and so on.

Thus, for any k, nn > nk+r for all sufficiently large n. It follows that
nn / nk J oo as n -+ oo, because we already know that nk+l / nk -+ oo as

n-+@.
The values of d(n) : nn are nothing but the diagonal aalues in the table

of values of the functions fl,fiZ,n3,n4,... :

d(1,) :11 is the first value of n,

d(2) :22 is the second value of n2,

d(3) :33 is the third value of n3,- 
and so on.

A similar idea applies to any sequence of functions. This is essentially"'*nut 
du Bois-Reymond d,iscovered inL875, so we name the result after

him.

Tnronrvr oF DU Bors-Rrvuomo. I/ h, fz,fs,. . . is a list of positiae integer

functions, then there is a positiae integer function that grows faster than any f i.
Proof: Since all function values are positive, we have

h(") + fz(") +'" + f"(n) > fi(") for each i 1n-

The function / defined by f (n) : ft@) + fz(") +... + f"(n), therefore
satisfies f (") 2 f;(n) for alln ) l. That is, f grows at least asfast as any
function f .

Consequently, if we define a function d by

d(n) :'f (')'
then d(n ) / f (") -) oo as n -+ oo, so d grows faster than any function f .E

It follows that no list of functions grows fast enough to "overtake"
every function of natural numbers. This was what interested du Bois-
Reymond, and it is indeed a very pregnant discovery, to which we will

15
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return later. But notice also that we again have a diagonal argument
for uncountability. (We regard the function d(n) : nf (n) as "diagonal"
because f (n) is the sum of entries in or above the diagonal in the table of
function values for f1, fz, fs,. . ..)

The set of positioe integer functions is uncountable, becarse for any list of
such functions f1(n) , fz@) , fs(r), . . . there is a function d(n) not in the list.

1,.7 THn CenorNar,rry oF THE CotllTTNUUM

So far we have found three uncountable sets: the set of real numbers, the
set of subsets of the positive integers, and the set of functions of positive
integers with positive integer values. In a certain sense these three are
essentially the same set, so it is not so surprising that in each case their
uncountability follows by a similar argument.

Like the several countable sets discussed in Section L.1, these three un-
countable sets have the same cardinality. We called it 2N0 in Section 1.3,

and it is also called the cardinality of the continuum, since the continuum
of real numbers is the most concrete set with cardinality 2No. We can
visualize the totality of all real numbers as a continuous line-the "nuni-
ber line"-but it is quite hard to visualize the totality of sets of positive
integers, say, until these sets have been matched up with real numbers.

Figure 1".7. One-to-one correspondence between IR and the interval (0,1).

Before establishing a one-to-one correspondence between real num-
bers and sets of positive integers, we first observe that there is a one-to-one

correspondence between the sef IR of all real numbers and the interaal (0,1) of
real numbers between 0 and 1. This is geometrically obvious if one bends
the line segment between 0 and L into a semicircle and then projects the
semicircle onto the number line IR as shown in Figure 1.7.

ConnrsroNDENCE BETwEEN Rrar Nuunnns AND SETS

A number in the interval (0, t) and a set of natural numbers have a cer-
tain notational similarity. Namely, they both have natural descriptions
as sequences of 0s and Ls. We have already seen how to encode a set of
natural numbers by such a sequence in Section L.2.

l-l

I

l

I
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Figure 1.8. First two bisections for L/3.

To encode a number x in (0,1) by a sequence of 0s and 1s we make
successive bisections of the interval, each time choosing the subinterval
in which r lies. If r lies in the left half, write down 0; if the right half,
write down 1. Then bisect the subinterval in which r lies, and repeat the
process. The resulting sequence of 0s and 1s is called the binary expansion

of x. For example, Figure 1.8 shows how we find the binary expansion of
1./3.

After the first bisection, 1/3 lies in the left half, so we write down
0. After bisecting the left half, 1,/3lies in the right half, so we write
down 1. Lr the resulting quarter interval, 1/3 is in the same position as

at the beginning; namely, 1./3 of the way from the left hand end of the
interval. Therefore, if we continue the bisection process, we will write
down 0 then 1 then 0 then L, and so on, forever. Thus 1/3 has the infinite
binary expansion _

'010101010101010L01010101 . . .

-{where the dot is a "binary point" instead of the decimal point). Am-
biguity enters when r falls on a line of bisection; for example, when
x :1/2 or x : !/4. In that case, we can assign r to either the left or
right subinterval when the line of subdivision hits x, but thereafter we
have no choice. If we write O-thus assigning x to the left half-then x
will lie in the right half of every subinterval constructed thereafter, and
the 0 wilt be followed by an infinite sequence of Ls. For example, | /2has
the binary expansion

.0111111111111111,L111111111 . . ..

But if we choose L at the beginning, then every digit thereafter is 0, so the
other binary expansion of 1, /2 is

.100000000000000000000000 . . . .

(This is analogous to the ambiguity in decimal expansions, where l/2
can be written as both .499999999. . . and '500000000. . ..)

In general, each binary fraction p/2q in (0,1) corresponds to two dif-
ferent sequences of 0s and 1s. Both sequences have the same initial seg-
ment, in one case followed by 10000. . . and in the other case followed

T7



18 1. Tnr Dracoxar, Ancuurmr

by 01111 . . . . Thus each binary fraction corresponds to two different sets
of nafural numbers. Fortunately, there are only countably many binary
fractions (for example, because they form a subset of the set of rationali)
so this breakdown of the one-to-one correspondence is easily fixed.

In fact we have already seen, in Section L.1", how countable sets in
two-to-one correspondence are also in one-to-one correspondence (con-
sider the set of all natural numbers and the set of all even numbers). Thus
the two-to-one correspondence between sequences ending in L0000. . . or
01111 . . . and binary fractions can be rearranged into a one-to-one corre-
spondence. Combining this with the one-to-one correspondence between
the remaining sequences of 0s and Ls and the remaining numbers be-
tween 0 and 1 gives the required one-to-one correspondence between
sets of natural numbers and real numbers between 0 and L.

ConnrsroNDENCE BETwEEN FuwcrroNS AND Rner Nuunrns

Each function / on the set of positive integers, with positive integer val-
ues, corresponds to a real number between 0 and L as follows. First write
down the sequence of values of f , say,

4, 2, 6, 1,, '1,, 8, 3, 5, ,..

Next, encode this sequence by a sequence of 0s and 1s, replacing each
positive integer f (") by a block of f (n) - 1 (hence possibly zero) 1s, and
each comma by a 0:

111010111110001111111011011110 . . . .

Finally, insert a binary point in front to make this sequence the binary ex-
pansion of a real number. The expansion is necessarily one with infinitely
many 0s, because the function f has infinitely many values. But this is
fine, because it means we omit all binary expansions ending in 111L... ,
and hence we get each real number between 0 and L at most once.

Conversely, each real between 0 and t has a unique binary expansion
with infinitely many 0s, and there is a unique function / encoded by this
expansion. For example, if the binary expansion is

.001011001111101101010101 . . .

then the successive values of f are

'J., 1., 2, 3, 1, 6, 3, 2, 2, 2, 2,

-t
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In general,

f (1) : (number of 1s before the first 0) + L,

f (2) : (number of Ls after the first 0 and before the second 0) + L,

f (3) : (number of Ls after the second 0 and before the third 0) + 1,

and so on.

Thus binary expansions give a one-to-one correspondence between posi-
tive integer functions and real numbers between 0 and 1.

1.8 HrsronrcAl BecrcnouND

INrrNrry rN ANCTENT CREECE

Zeno's argument makes a false assumption in asserting that it is impossible
for a thing to pass over or severally to meet with infinitefly many] things in
finite time.

-AristotlePhysics, Book VI, Chap. 2.

Since ancient times, infinity has been a key part of mathematics, though
its use has often been:considered harmful. Around 500 ncr, the Pythagore-
ans discovered the irrationality of 1[2, thus beginnir,g a long struggle to
glasp (what we now call) the concept of real number. This was part
of a larger struggle to reconcile the continuous magnitudes arising in
geometry-length, area, volume-with the discrete natural numbers
1,2,3,4,. . . arising from counting.

The shock of irrationality apparently left the Greeks unwilling to treat
continuous riragnitudes as numbers. For example, they viewed'the prod-
uct of two lengths as a rectangle, the product of three lengths as a box,
and the product of four lengths as having no meaning at all. Neverthe-
less, they made great progress in relating continuous magnitudes to the
natural numbers. Around 350 ncr, Eudoxus introduced a "theory of pro-
portion" (known to us from Book V of Euclid's Elements), which was as
close as anyone came to defining real numbers before the 19th cenfury.
Euclid characterized irrational lengths / as those for which a certain pro-
cess (the euclidean algorithm on / and 1) is infinite. Archimedes found
areas and volumes of curved figures by infinite processes, even breaking
the taboo against "actltal" infinite sets in some of his methods.

Almost all mathematicians until the L9th century made a sharp dis-
tinction between what they called the potential and actual infinite. The po-
tential infinite is typically an unending process, such as counting 1.,2,3, . . .

or cutting a curved region into smaller and smaller triangles. The actual

79
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infiyJe^is the_supposed completion of an unending process, such as the
set {1,2,3,...} of all natural numbers. In principle", it is contradictory to
speak of the completion of an unending p.oceis, but in practice *r.,y
processes beg for completion, because they have a clear limrt.

_ 
The famous paradoxes of Zeno, such as Achilles and the tortoise, in-

volve Processes with a clear limit. Achilles starts behind the tortoise, but
runs faster, so clearly he will catch up with the tortoise at some point.
The worry, at least for Zeno, is that Achilles is behind the tortoi se at
infinitely many stages (the first stage ends when Achilles reaches the tor-
toise's starting point, the second when Achilles completes the tortoise,s
first stage, the third when Achilles completes the tortbise's second stage,
and so on). So, apparently, motion involves completing an infinite se-
quence of events. For the Greeks, this made the concept of motion seem
problematic, and they looked for ways to resolve the paradox in terms
of potential infinity (as Aristotle did in his Physics). For us, it probably
supports the idea that actual infinity exists.

At any rate, in ancient Greek mathematics there are many examples
where the limit of an infinite process gives interesting new knowledge.
For example, Euclid and Archimedes found that both the volume of the
tetrahedron and the area of a parabolic segment may be found from'the
infinite series

r-r-1*1* 1 - 1 -L...--' 4' 42' 43 t 44-r-" r

which has sum 4/3. They are able to find this sum by considering only
the potential infinity of terms

and showing that

o each of these terms is less than 4/3, and

o each number less than 4/3 is exceeded by some term in the se-
quence.

Thusitisfairtocall 4/3the sumof 1+ I + #+ *+*+...,because
we have exhausted all other possibilities. 

- 
Thi-s meihod oj exhaustion, also

invented by Eudoxus, can be used to avoid actual infinities in many of
the cases that interested the Greeks. But not all.

Archimedes wrote a book called The Method, which was lost for many
centuries and did not influence the later development of mathematics. It
describes the method by which he discovered iome of his most famous
results, such as the theorem that the volume of a sphere is2/3the volume
of its circumscribing cylinder. The book resurfaced around 1900, and only

II
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then was it realized that Archimedes had used actual infinity in a way
that cannot be avoided. In finding certain volumes, Archimedes views a
solid body as a sum of slices of zero thickness. As we now know, there are
uncountably many such slices-corresponding to the uncountably many
points on the line-so one cannot view the sum of all slices as the "rimit"
of finite sums. Of course, it is unlikely that Archimedes had any inkling
of uncountability, though l_re may have suspected that he was dealing
with a new kind of infinity.l

The Method gives evidence that intuition about infinity, even about the
continuum, exists and is useful in making mathematical discoveries. More
fruits of this intuition appeared around 1800.

Trrr Frnsr Moornu hsruruoNs Anour rHE CoNTTNUUM

... we ascribe to the straight line completeness, absence of gaps, or continuity.
ln what then does this continuity consist?

Cont inuity and rrr ationa, ;#ilir',Lfl#:itf
in Dedekind (1901), p. 10.

The fundamental property of the continuum [0,1] is that it is, well, con-
tinuous, in the sense that It fills the space betuteen its endpoints without gaps.
Around 1800, the German mathematician Carl Friedrich Gauss realized
that this seemingly obvious property is the key to a difficult theorem that
several mathematicians had vainly sought to prove-the so-called "fun-
darnental theorem of algebra." This theorem states that any polynomial
equation, such as

x4 -2x2 +gx+7 :0, or x5 - x*1 :0,
is satisfied by some complex number x. Gauss himself had trouble prov-
ing the theorem, and all the proofs he offered are incomplete by modern
standards. However, in 1816 he gave a proof that clearly identifies the
difficulty: it all boils down to the absence of gaps in the continuum.

Gauss's 1816 proof takes any polynomial equation and reduces it, by
purely algebraic manipulations, to an equation of odd degree, say p(x) : g.

This means that the highest-degree term in p(x), such as xs in the second
example above, is an odd power of x. Now, for large values of r, the
polynomial p(x) is dominated by its highest-degree term, and so p(x)
changes signbetween large negative values of x and large positive values
of x, since this happens to any odd power of r.

Thus the graph y : p(x) is a continuous curve which moves from
negative values of y to positive values. Figure 1.9 shows the curve for

lFor an up-to-date report onThe Method, with some interesting mathematical specula-
tions, see Netz and Noel (2007).
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Figure L.9. Graph of the polynomial y : x5 - .r + L.

the actual example U : x5 - x + 1. Since the curve passes from below to
above the r-axis, and the x-axis has no gaps, the curve necessarily meets
the x-axis.

That is, there is a real aalue of x for which x5 - x* 1 : 0. Similarly,
any odd-degree polynomial equation has a real solution, and the fun-
damental theorem of algebra follows. (Gauss's reduction to odd degree
also involves solving quadratic equations, which we know have solutions,
sometimes in the complex numbers.)

Gauss's intuition had led him to assume what we now call the interme-
diate oalue theorem: any continuous function /(x) that takes both positive
and negative values between x : a and x : b takes the value zero f.or
some x : c between a and b. The first to identify this assumption, and
to attempt to prove it, was the Czech mathematician Bernard Bolzano in
1816. Bolzano was ahead of his time, not only in noticing a property of
continuous functions in a theorem previously thought to belong to alge-
bra, but also in realizing that the intermediate value property depends
on the nature of the continuum.

Bolzano's attempted proof was incomplete, because a definition of
the continuum was completely lacking in his time. However, he correctly
identified a completeness condition that any reasonable concept of contin-
uum must satisfy. This is the least upper bound property: if S is a set of real
numbers with an upper bound, then S has a least upper bound. (That is,
among the numbers greater than or equal to all members of S, there is a
least.)

In 1858, Richard Dedekind brought this train of thought to a satisfying
conclusion, defining real numbers by what he called cuts in the rationals.
A cut is intuitively a separation of the rational numbers into a lower set L
and an upper set U, as if by an infinitely sharp knife. Formally, a cut is a
pair (L, U) where L and U are sets that together are all the rationals and

il
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such that every member of L is less than every member of U. Cuts (L, U)
represent both rational and irrational numbers as follows:

o If L has a greatest member, or U has a least membet say r, then
(L,U) represents the rational number r.

o If L has no greatest member and U has no least member, then (L,U)
represents an irrational number. (This happens, for example, when
U consists of the positive rationals with square > 2, and L con-
sists of the remaining rationals. The pair (L, U) then represents the
irrational number we cail r2.)

The latter type of cut represents a gap n the rationals and, at the same
time, provides an object to fill the gap-the cut (L,U).With breathtaking
nerve/ Dedekind created a gapless continuum by filling each gap in the
rationals, taking the object that fills each gap to be essentialty the gap itself.2

IwrrNrrn DECTMALS REVrsrrED

It should be mentioned that the infinite decimals, used to model
real numbers earlier in this chapter, are essentially a more read-
able version of Dedekind cuts. An infinite decimal, such as
3.74L59..., represents a cut in the less crowded set of decimal

fractions, separating the nearest neighbors less than 3.14159... ,

3, 3.1, 3.14, 3.1.4L, 3.1.4'1.5, 3.14159,

from the nearest neighbors greater than 3.14159... ,

4, 3.2, 3.15, 3.1.42, 3.1.41.6, 3.1.4160,

Infinite decimals are easy to read and understand, but try defin-
ing their sum and product! You will probably fall back on adding
and multiplying their neighboring decimal fractions, much as

with Dedekind cuts.

Of course, it is not enough that there are no gaps in the set of cuts.
We also need to know that cuts are entities that behaue like numbers. This
is true. One can define the "sum" and "product" of two cuts in terms
of the rational numbers in them, and this "s'tJfi,L" and "product" have the
usual algebraic properties. For example, the cut for O+ \/3 has lower

2Dedekind slightty tarnished the purity and boldness of his idea by insisting on his right
to create a new object to fill each gap. It is perfectly valid, and more economical, to insist that
the gap itself is a genuine mathematical object, which we can take to be the pair (L,U).
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set consisting of all the numbers r + s, where r is in the lower set for Ji
and s is in the lower set for r./5. fnis is the same as the cut for rt + J2
because t * s : s * r. Best of alr, any bounded set s of cuts has a least upper
bound. The least upper bound of S has a lower set obtained by uniting
the lower sets for all members of S.

Thus, with Dedekind's definition of real numbers, it was finally possi-
ble to prove the intermediate value theorem, and hence the fundamental
theorem of algebra. At the same time, the proof initiated a new direc-
tion in mathematical thought. Previously undefined mathematical ob-
jects became defined in terms of sets, and every set became a legitimate
mathematical object-even the uncountable set of real numbers.

Indeed, the set of real numbers was welcomed by many mathemati-
cians as a mathematical model of the line. Today, the "number line"
seems like a simple idea, but it is not! A "point" is a whole universe
to someone who knows that it is actually a cut in the infinite set of ra-
tional numbers. Nonetheless, in the 1870s, many mathematicians saw
this arithmetization of geometry as the best way to build the foundations
of mathematics. Arithmetization resolved the ancient conflict between
numbers and geometric magnitudes; it also provided a corunon foun{g-
tion for geometry and calculus. And arithmetization was timely because
Cantor had just started exploring the set concept itself.

However, further exploration of the set concept led to some surprises.

Tun PanaDoxES oF SET Tnnony

... a mere practical joke played on mankind by the goddess of wisdom.

-Azriel Levy (1979), p.7.

The function-based diagonal argument of Paul du Bois-Reymond (Sec-
tion 1".6) had far-reaching consequences, as we will see in later chapters
of this book. The set-based diagonal argument of Cantor (Section 1.3)
had consequences that were more immediate and dramatic.

In 1891, Cantor realized that the diagonal argument applies to any set,
showing that any set X has more subsets than members. of. course, we cannot
generally visualize a tabulation of subsets of X, as we did in Section 1.3
for subsets of the natural numbers. It is sufficient to consider any one-to-
lne correspondence between members x of X and subsets of X. Let S, be
the subset corresponding to r. From the sets Sa we define the "diagonal
set" S, whose members are the x such that x does not belong to Sr.

It is clear that S dffirs from each set Sr with respect to the element x: if
r is in S, then r is not in S, and if x is not Sx then x is in S. Thus, any
pairing of subsets of X with members of X fails to include all subsets.
This is what we mean by saying that X has more subsets than members.

I I
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It follows, in turn, that there is no largest set. And, therefore, there is no
such thing as the "set of all sets"-because the set of all sets, if it exists, is
necessarily the largest set. When Cantor noticed this, in 1895, it seems to
have given him some pause. What exactly does the word "set" mean if
there is no set of all sets? Cantor did not have a precise answer to this
question, but neither was he greatly perturbed. He had no commitment
to the "set of all sets" and was content to consider only sets obtained by
clear operations on given sets, such as collecting all subsets.

The question was more troubling for philosophers of mathematics,
such as Gottlob Frege and Bertrand Russell, who believed that any proP-
erty P should determine a set-the set of all objects with propefiy P.
\Atrhen the property in question is "being a set" then this belief leads to
the "set of all sets." Indeed, Russell rediscovered the contradiction in
the "set of all sets" in L901,, in a form that became famous as the Russell

paradox. Russell's contribution was to distill the contradiction into "the
set of all sets that are not members of themselves." The latter "set" R is
immediately self-contradictory, since R belongs to R if and only if R does

nof belong to R.

Russell's argument convinced mathematicians that the set concept
needs clarification, and it reinforced the idea from the 1870s that mathe-
matics needs secure foundations. This "crisis in foundations" (and other
"crises" we will medt later) had profound consequences, as we will see

in the rest of the book. The problem facing set theory was described by
ttp German mathematician Ernst Zermelo (1908) as follows.

. . . the very existence of this discipline seems to be threatened by
certain contradictions . . .In particular, in view of the "Russell anti-
nomy" of the set of all sets that do not contain themselves as ele-

ments, it no longer seems admissible today to assign to an arbitrary
logically defined notion a set, ot class, as its extension.

Zermelo believed that set theory could be saved by axioms for sets, for-
malizing Cantor's intuition that all sets arise from given sets (such as the
set of natural numbers) by well-defined operations (such as collecting all
subsets).

The axioms for sets most commonly used today are due to Zermelo
(1908), with an important supplement from his compatriot (who later
moved to Israel) Abraham Fraenkel n 7922. Because of this they are
called the ZF axioms. Th"y are written in a formal language for set theory
that I have not introduced, but most of them can be clearly expressed in
ordinary language with the help of the concept of "membershiP." We
write the set with members A,b,c,... as {a,b,c,...}. Thus the brackets
"comprehend" the objects A,b,c,... (which may themselves be sets) as

members of a set.

I.
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Axrou 1. TWo sets are equal if and only if they have the same members.

Axrou 2. There is a set with no members, called the empty set.

Axrovr 3. For any sets X and Y, there is a set whose only members are
X and Y. (This set, {X, Y}, is called the unordered pair of X and Y.

Note that, when Y: Z, Axiom 1" gives {Y,Z}: {y}. Thus the
pairing axiom also gives us the "singleton" set {Y} whose single
member is Y.) The ZF axioms are the following.

Axror"r 4. For any set X there is a set whose members are the members
of members of X. (In the case where X : {Y , Z}, the members of
members of X form what is called the union of Y and Z, denotedby
Y U Z. In all cases, the set of members of members of X is called
the union of the members of X.)

Axrou 5. For any set X, there is a set whose members are the subsets of
X, where a subset of X is a set whose members are members of X.
(The set of subsets of X is called the power set of X.)

Axrou 6. For any function definiti on f ,and set X, the values f (*),where''
r is a member of X, form a set. (This set is called the range of the
function / on the domain X, and the axiom is called replacement.)

Axrorvr 7. Any nonempty set X has a member Y with no members in
X. (A more enlightening version of this axiom-though harder to
express in formal language-is the following. There is no infinite
descending sequence for set membership. That is, if one takes a member
X1 of X, then a member X2 of X1, and so on, then this process can

continue for only finitely many steps.)

Axrovr 8. There is an infinite set, in fact a nonempty set which, along
with any member X, also has the member X U {X}.

Axioms 1-6 say that sets are built from the empty set by operations of
pairing, union, power, and replacement (taking the range of a function).
To say that a function / is "defined" means that / is expressed by a
formula in the formal language of ZF, which basically consists of logic
symbols and symbols for membership and equality. We study formal
languages for mathematics in Chapters 3, 4, and 5.

The mysterious Axiom 7, called the axiom of foundation, enables us to
prove that eoery set arises from the empty set by the operations above. It
may seem that we have a severely limited menu of sets, but in fact there
are sets that can play the roles of all the objects normally needed for
mathematics. First, following an idea of the Hungarian (later American)

tl
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mathematician ]ohn von Neumann from the 1920s, we can define the
natural numbers as follows. Let 0 be the empty set (what else?), then let

i. : {o},
2: {0,7},
3 : {0, t,2},

and so on. Notice thatwehave n*L: /tl){n} andm < n if and only
if m is a member of z. Thus set theory gives us definitions of the suc-

cessor function and the "less than" relation for free, and we can develop
arithmetic.

Next, Axiom 8 (the axiom of infinity), together with Axiom 6, tells us

that there is a set whose members are 0,1',2,3,. . ., so we have the set of
natural numbers. Taking its power set, we are well on the way to the real
numbers, the number line, geometry, calculus, and virtually everything
else.

Who knew that the empty set could be so fruitful?
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In the previous chapter we studied sets that can be "listed" completely,

with every membei in a positive integer position We found that some

sets cannot be listed in this way, even though the list is infinite. The

diagonal argument always gives a new member. Can we continue the list

past infinity?
Georg Cantor cdunted past infinity using the concept of ordinal num-

bers. ThJnatural numbers 0,1,2,3, . . . are the finite ordinal numbers, but

they have a least uPPer bound ar-the fitst transfinite otdinal number' A

,,"ut *ry to formalize this is to let os be the set {0,1,2,3,'" }' Then r''r is

the firstierm beyond the finite ordinals on the list 0, 1,2,3,. . ',(/), ordered

by membership.
Like the finite ordinals, each transfinite ordinal has a successor/ so

there are ordinals rr.r * l,u *2,u * 3, and so on.

ordinals keep pace with the production of new objects by the diag-

onal argument, b".ur.rt" any countable set of ordinals has a least uPPer

bound. Beyond u*L,u*2,@t3,... there isu'2' Beyond ?'2'''
Z,@.4,... ihere is u2. Beyond @2,@3,(r)4,... there is uu. And these are

merely a few of what we call the countable ordinals'

The least upper bound of the countable ordinals is the first uncounta.ble

ordinal, called-r.;1. Thus ordinals offer a different road to uncountable

infinity. The ordinal road is slower, but more-shall we say-orderly'
Not only are ordinals ordered, they are well-ordered. Any nonemPty

set of them has a least member; equivalently, there is no infinite descend-

ing sequence of ord.inals. Thus, iaen though the road to an ordinal may be

loig, aiy return trip is short (because it is finite). This fact has surprising

.orit"qr"ttces in the world of finite objects, as we show in Sections 2'7

and 2.8.
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