CHAPTER 111

Figure and Ground

Primes vs. Composites

THERE IS A strangeness to the idea that concepts can be captured by simple
typographical manipulations. The one concept so far captured is that of
addition, and it may not have appeared very strange. But suppose the goal
were to create a formal system with theorems of the form P, the letter %’
standing for a hyphen-string, and where the only such theorems would be
ones in which the hyphen-string contained exactly a prime number of
hyphens. Thus, P-~- would be a theorem, but P—-—- would not. How
could this be done typographically? First, it is important to specify clearly
what is meant by typographical operations. The complete repertoire has
been presented in the MIU-system and the pqg-system, so we really only
need to make a list of the kinds of things we have permitted:

) reading and recognizing any of a finite set of symbols;

) writing down any symbol belonging to that set;

) copying any of those symbols from one place to another;

) erasing any of those symbols;

5) checking to see whether one symbol is the same as another;
(6) keeping and using a list of previously generated theorems.

The list.is a little redundant, but no matter. What is important is that it
clearly involves only trivial abilities, each of them far less than the ability to
distinguish primes from nonprimes. How, then, could we compound some
of these operations to make a formal system in which primes are distin-
guished from composite numbers?

The tg-System

A first step might be to try to solve a simpler, but related, problem. We
could try to make a system similar to the pg-system, except that it repre-
sents multiplication, instead of addition. Let’s call it the ig-system, ‘t’ for
‘times’. More specifically, suppose X, Y, and Z are, respectively, the num-
bers of hyphens in the hyphen-strings x, y, and z. (Notice I am taking
special pains to distinguish between a string and the number of hyphens it
contains.) Then we wish the string xty gz to be a theorem if and only if X
times Y equals Z. For instance, —~t———q—w~~—— should be a theorem
because 2 times 3 equals 6, but ~~t—~qg-~-should not be a theorem. The
tg-system can be characterized just about as easily as the pg-system—
namely, by using just one axiom schema and one rule of inference:
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AX10M SCHEMA: xt—-qx is an axiom, whenever x is a hyphen-string.

RuLe oF INFERENCE: Suppose that x, y, and z are all hyphen-strings. And
suppose that xtyqz is an old theorem. Then, xty-qgzx is a new

theorem.
Below 1s the derivation of the theorem ——t—-—-q—————~ :
(1) ——t—-q-- (axiom)
(2) ~=teeg-———- (by rule of inference,
using line (1) as the old theorem)
(3) —--t-———qgq——- (by rule of inference,

using line (2) as the old theorem)

Notice how the middle hyphen-string grows by one hyphen each time the
rule of inference is applied; so it is predictable that if you want a theorem
with ten hyphens in the middle, you apply the rule of inference nine times
in a row.

Capturing Compositeness

Multiplication, a slightly trickier concept than addition, has now been
“captured” typographically, like the birds in Escher’s Liberation. What about
primeness? Here’s a plan that might seem smart: using the tg-system,
define a new set of theorems of the form Cx, which characterize composite
numbers, as follows:

RuLe: Suppose x, y, and z are hyphen-strings. If x—ty—qz is a theorem,
then Cz is a theorem.

This works by saying that Z (the number of hyphens in z) is composite as
long as it is the product of two numbers greater than l—namely, X + 1
(the number of hyphensin x-),and Y + 1 (the number of hyphensin y-).
I am defending this new rule by giving you some “Intelligent mode”
justifications for it. That is because you are a human being, and want to
know why there is such a rule. If you were operating exclusively in the
“Mechanical mode”, you would not need any justification, since M-mode
workers just follow the rules mechanically and happily, never questioning
them!

Because you work in the I-mode, you will tend to blur in your mind the
distinction between strings and their interpretations. You see, things can
become quite confusing as soon as you perceive “meaning” in the symbols
which you are manipulating. You have to fight your own self to keep from
thinking that the string ‘———"1s the number 3. The Requirement of Formal-
ity, which in Chapter I probably seemed puzzling (because it seemed so
obvious), here becomes tricky, and crucial. It is the essential thing which
keeps you from mixing up the I-mode with the M-mode; or said another
way, it keeps you from mixing up arithmetical facts with typographical
theorems.
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lllegally Characterizing Primes

It is very tempting to jump from the G-type theorems directly to P-type
theorems, by proposing a rule of the following kind:

ProposeD RULE:  Suppose x is a hyphen-string. If Cxisnot a theorem, then
Px is a theorem.

The fatal flaw here is that checking whether Cx is not a theorem is not an
explicitly typographical operation. To know for sure that MU 1s not a
theorem of the MIU-system, you have to go outside of the system . . . and so
it is with this Proposed Rule. It is a rule which violates the whole idea of
formal systems, in that it asks you to operate informally—that is, outside
the system. Typographical operation (6) allows you to look into the
stockpile of previously found theorems, but this Proposed Rule is asking
you to look into a hypothetical “Table of Nontheorems”. But in order to
generate such a table, you would have to do some reasoning outside the
system—reasoning which shows why various strings cannot be generated
inside the system. Now it may well be that there is another formal system
which can generate the “Table of Nontheorems”, by purely typographical
means. In fact, our aim is to find just such a system. But the Proposed Rule
is not a typographical rule, and must be dropped.

This is such an important point that we might dwell on it a bit more. In
our C-system (which includes the tq-system and the rule which defines
C-type theorems), we have theorems of the form Cx, with %" standing, as
usual, for a hyphen-string. There are also nontheorems of the form Cx.
(These are what I mean when I refer to “nontheorems”, although of course
tt~Cqq and other ill-formed messes are also nontheorems.) The differ-
ence is that theorems have a composite number of hyphens, nontheorems
have a prime number of hyphens. Now the theorems all have a common
“form”, that is, originate from a common set of typographical rules. Do all
nontheorems also have a common “form”, in the same sense? Below is a list
of C-type theorems, shown without their derivations. The parenthesized
numbers following them simply count the hyphens in them.
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The “holes™ in this list are the nontheorems. To repeat the earlier question:
Do the holes also have some “form” in common? Would it be reasonable to
say that merely by virtue of being the holes in this list, they share a common
form? Yes and no. That they share some typographical quality is undeni-
able, but whether we want to call it “form” is unclear. The reason for
hesitating is that the holes are only negatively defined-—they are the things
that are left out of a list which is positively defined.

Figure and Ground

This recalls the famous artistic distinction between figure and ground. When
a figure or “positive space” (e.g., a human form, or a letter, or a still life) is
drawn inside a frame, an unavoidable consequence is that its complemen-
tary shape—also called the “ground”, or “background”, or “negative
space”—has also been drawn. In most drawings, however, this figure-
ground relationship plays little role. The artist is much less interested in the
ground than in the figure. But sometimes, an artist will take interest in the
ground as well.

There are beautiful alphabets which play with this figure-ground dis-
tinction. A message written in such an alphabet 1s shown below. At first it
looks like a collection of somewhat random blobs, but if you step back a

ways and stare at it for a while, all of a sudden, you will see seven letters
appear in this . ..

FIGURE 15.

For a similar effect, take a look at my drawing Smoke Signal (Fig. 139).
Along these lines, you might consider this puzzle: can you somehow create
a drawing containing words in both the figure and the ground?

Let us now officially distinguish between two kinds of figures: cursively
drawable ones, and recursive ones (by the way, these are my own terms—they
are not in common usage). A cursively drawable figure is one whose ground
1s merely an accidental by-product of the drawing act. A recursive figure is
one whose ground can be seen as a figure in its own right. Usually this is
quite deliberate on the part of the artist. The “re” in “recursive” represents
the fact that both foreground and background are cursively drawable—the
figure is “twice-cursive”. Each figure-ground boundary in a recursive figure
is a double-edged sword. M. C. Escher was a master at drawing recursive
figures—see, for instance, his beautiful recursive drawing of birds (Fig. 16).
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i
FIGURE 16. Tiling of the plane using birds, by M. C. Escher (from a 1942 notebook).

Our distinction is not as rigorous as one in mathematics, for who can
definitively say that a particular ground is not a figure? Once pointed out,
almost any ground has interest of its own. In that sense, every figure is
recursive. But that is not what I intended by the term. There is a natural
and intuitive notion of recognizable forms. Are both the foreground and
background recognizable forms? If so, then the drawing is recursive. If you
look at the grounds of most line drawings, you will find them rather
unrecognizable. This demonstrates that

There exist recognizable forms whose negative space is not any
recognizable form.

In more “technical” terminology, this becomes:
There exist cursively drawable figures which are not recursive.

Scott Kim’s solution to the above puzzle, which I call his “FIGURE-
FIGURE Figure”, is shown in Figure 17. If you read both black and white,
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FIGURE 17. FIGURE-FIGURE Figure, by Scott E. Kim (1975).




you will see “FIGURE” everywhere, but “GROUND” nowhere! It is a paragon
of recursive figures. In this clever drawing, there are two nonequivalent
ways of characterizing the black regions:

(1) as the negative space to the white regions;
(2) as altered copies of the white regions (produced by coloring
and shifting each white region).

(In the special case of the FIGURE-FIGURE Figure, the two characterizations
are equivalent—but in most black-and-white pictures, they would not be.)
Now in Chapter VIII, when we create our Typographical Number Theory
(TNT), it will be our hope that the set of all false statements of number
theory can be characterized in two analogous ways:

(1) as the negative space to the set of all TNT-theorems;
(2) as altered copies of the set of all TNT-theorems (produced by
negating each TNT-theorem).

But this hope will be dashed, because:

(1) inside the set of all nontheorems are found some truths;
(2) outside the set of all negated theorems are found some false-
hoods.

You will see why and how this happens, in Chapter XIV. Meanwhile,
ponder over a pictorial representation of the situation (Fig. 18).

Figure and Ground in Music

One mayalso look for figures and grounds in music. One analogue is the
distinction between melody and accompaniment—for the melody is always
in the forefront of our attention, and the accompaniment is subsidiary, in
some sense. Therefore it is surprising when we find, in the lower lines of a
piece of music, recognizable melodies. This does not happen too often in
post-baroque music. Usually the harmonies are not thought of as fore-
ground. But in baroque music—in Bach above all—the distinct lines,
whether high or low or in between, all act as “figures”. In this sense, pieces
by Bach can be called “recursive”.

Another figure-ground distinction exists in music: that between on-
beat and off-beat. If you count notes in a measure “one-and, two-and,
three-and, four-and”, most melody-notes will come on numbers, not on
“and”’s. But sometimes, a melody will be deliberately pushed onto the
“and”'s, for the sheer effect of it. This occurs in several études for the
piano by Chopin, for instance. It also occurs in Bach—particularly in his
Sonatas and Partitas for unaccompanied violin, and his Suites for unac-
companied cello. There, Bach manages to get two or more musical lines
going simultaneously. Sometimes he does this by having the solo instru-
ment play “double stops”—two notes at once. Other times, however, he
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FIGURE 18. Considerable visual symbolism is featured in this diagram of the relationship
between various classes of TNT strings. The biggest box represents the set of all TNT sirings.
The next-biggest box represents the set of all well-formed TNT strings. Within it is found the
set of all sentences of TNT. Now things begin to get interesting. The set of theorems is
pictured as a tree growing out of a trunk (representing the set of axioms). The treg-symbol was
chosen because of the recursive growth pattern which it exhibits: new branches (theorems)
constantly sprouting from old ones. The fingerlike branches probe into the corners of the
constraining region (the set of truths), yet can never fully occupy it. The boundary between
the set of truths and the set of falsities is meant to suggest a randomly meandering coastline
which, no matter how closely you examine it, always has finer levels of structure, and is
consequently impossible to describe exactly in any finite way. (See B. Mandelbrot's book
Fractals.) The reflected tree represents the set of negations of theorems: all of them false,
yet unable collectively to span the space of false statements. [Drawing by the author. ]

puts one voice on the on-beats, and the other voice on the off-beats, so the
ear separates them and hears two distinct melodies weaving in and out, and
harmonizing with each other. Needless to say, Bach didn’t stop at this level
of complexity ...

Recursively Enumerable Sets vs. Recursive Sets

Now let us carry back the notions of figure and ground to the domain of
formal systems. In our example, the role of positive space is played by the
C-type theorems, and the role of negative space is played by strings with a
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prime number of hyphens. So far, the only way we have found to represent
prime numbers typographically is as a negative space. Is there, however,
some way—I don’t care how complicated—of representing the primes as a
positive space—that is, as a set of theorems of some formal system?

Different people’s intuitions give different answers here. I remember
quite vividly how puzzled and intrigued I was upon realizing the difference
between a positive characterization and a negative characterization. I was
quite convinced that not only the primes, but any set of numbers which
could be represented negatively, could also be represented positively. The
intuition underlying my belief is represented by the question: “How could a
figure and its ground not carry exactly the same information?” They seemed to me
to embody the same information, just coded in two complementary ways.
What seems right to you?

It turns out I was right about the primes, but wrong in general. This
astonished me, and continues to astonish me even today. It is a fact that:

There exist formal systems whose negative space (set of non-
theorems) is not the positive space (set of theorems) of any formal
system.

This result, it turns out, is of depth equal to Godel’'s Theorem—so it is not
surprising that my intuition was upset. I, just like the mathematicians of the
early twentieth century, expected the world of formal systems and natural
numbers to be more predictable than it is. In more technical terminology,
this becomes:

There exist recursively enumerable sets which are not recursive.

The phrase recursively enumerable (often abbreviated “r.e.”} is the mathemat-
ical counterpart to our artistic notion of “cursively drawable”—and recursive
is the counterpart of “recursive”. For a set of strings to be “r.e.” means that
it can be generated according to typographical rules—for example, the set
of C-type theorems, the set of theorems of the MIU-system—indeed, the
set of theorems of any formal system. This could be compared with the
conception of a “figure” as “a set of lines which can be generated according
to artistic rules” (whatever that might mean!). And a “recursive set” is like a
figure whose ground is also a figure—not only is it r.e., but its complement
is also r.e.
It follows from the above result that:

There exist formal systems for which there is no typographical
decision procedure.

How does this follow? Very simply. A typographical decision procedure is a
method which tells theorems from nontheorems. The existence of such a
test allows us to generate all nontheorems systematically, simply by going
down a list of all strings and performing the test on them one at a time,
discarding ill-formed strings and theorems along the way. This amounts to
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a typographical method for generating the set of nontheorems. But accord -
ing to the earlier statement (which we here accept on faith), for some
systems this is not possible. So we must conclude that typographical deci-
sion procedures do not exist for all formal systems.

Suppose we found a set F of natural numbers (‘F’ for ‘Figure’} which
we could generate in some formal way—like the composite numbers. Sup-
pose its complement is the set G (for ‘Ground’)—Ilike the primes. Together,
F and G make up all the natural numbers, and we know a rule for making
all the numbers in set F, but we know no such rule for making all the
numbers in set G. Itis important to understand that if the members of F
were always generated in order of increasing size, then we could always
characterize G. The problem is that many r.e. sets are generated by
methods which throw in elements in an arbitrary order, so you never know
if a number which has been skipped over for a long time will get included if
you just wait a little longer.

We answered no to the artistic question, “Are all figures recursive?”
We have now seen that we must likewise answer no to the analogous
question in mathematics: “Are all sets recursive?” With this perspective, let
us now come back to the elusive word “form”. Let us take our figure-set F
and our ground-set G again. We can agree that all the numbers in set F
have some common “form”—but can the same be said about numbers in set
G? Itis a strange question. When we are dealing with an infinite set to start
with—the natural numbers—the holes created by removing some subset
may be very hard to define in any explicit way. And so it may be that they
are not connected by any common attribute or “form”. In the last analysis,
it is a matter of taste whether you want to use the word “form”—but just
thinking about it is provocative. Perhaps it is best not to define “form”, but
to leave it with some intuitive fluidity.

Here is a puzzle to think about in connection with the above matters.
Can you characterize the following set of integers (or its negative space)?

1 3 7 12 18 26 35 45 K6 69...

How is this sequence like the FIGURE-FIGURE Figure?

Primes as Figure Rather than Ground

Finally, what about a formal system for generating primes? How is it done?
The trick is to skip right over multiplication, and to go directly to nondivisi-
bility as the thing to represent positively. Here are an axiom schema and a
rule for producing theorems which represent the notion that one number
does not divide (DN D) another number exactly:

AxioM ScHEMA: xyDNDx where x and y are hyphen-strings.

For example, ————- DND--, where x has been replaced by ‘—— and y by

3
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Rure: If xDNDy is a theorem, then so is x DN Dxy.

If you use the rule twice, you can generate this theorem:

which is interpreted as “5 does not divide 12”. But ———DND—————— is
not a theorem. What goes wrong if you try to produce it?

Now in order to determine that a given number is prime, we have to
build up some knowledge about its nondivisibility properties. In particular,
we want to know that it is not divisible by 2 or 3 or 4, etc., all the way up to 1
less than the number itself. But we can’t be so vague in formal systems as to
say “et cetera”. We must spell things out. We would like to have a way of
saying, in the language of the system, “the number Z is divisor-free up to X",
meaning that no number between 2 and X divides Z. This can be done, but
there is a trick to it. Think about it if you want.

Here 1s the solution:

RuLe; If —--DNDz is a theorem, sois zDF——,

RuLe: If zDFx is a theorem and also x—DNDz is a theorem, then
zDFx-is a theorem.

These two rules capture the notion of divisor-freeness. All we need to dois to
say that primes are numbers which are divisor-free up to 1 less than
themselves:

RuLe: If z—DFz is a theorem, then Pz- is a theorem,
Oh-——let’s not forget that 2 is prime!

Axiom: P——

And there you have it. The principle of representing primality formally is
that there 1s a test for divisibility which can be done without any backtrack-
ing. You march steadily upward, testing first for divisibility by 2, then by 3,
and so on. It is this “monotonicity” or unidirectionality—this absence of
cross-play between lengthening and shortening, increasing and
decreasing—that allows primality to be captured. And it is this potential
complexity of formal systems to involve arbitrary amounts of backwards-
forwards interference that is responsible for such limitative results as
Godel's Theorem, Turing’s Halting Problem, and the fact that not all
recursively enumerable sets are recursive.
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