CHAPTER 11

Meaning and Form
in Mathematics

THis Two-Part Invention was the inspiration for my two characters. Just as
Lewis Carroll took liberties with Zeno's Tortoise and Achilles, so have 1
taken liberties with Lewis Carroll's Tortoise and Achilles. In Carroll's
dialogue, the same events take place over and over again, only each time on
a higher and higher level; it is a wonderful analogue to Bach’s Ever-Rising
Canon. The Carrollian Dialogue, with its wit subtracted out, still leaves a
deep philosophical problem: Do words and thoughts follow formal rules, or do
they not? That problem is the problem of this book.

In this Chapter and the next, we will look at several new formal
systems. This will give us a much wider perspective on the concept of
formal system. By the end of these two Chapters, you should have quite a
good idea of the power of formal systems, and why they are of interest to
mathematicians and logicians.

The pg-System

'The formal system of this Chapter is called the pg-system. It is not important
to mathematicians or logicians—in fact, it is just a simple invention of mine.
Its importance lies only in the fact that it provides an excellent example of
many ideas that play a large role in this book. There are three distinct
symbols of the pg-system:

P q -

—the letters p, g, and the hyphen.

The pg-system has an infinite number of axioms. Since we can't write
them all down, we have to have some other way of describing what they are.
Actually, we want more than just a description of the axioms; we want a way
to tell whether some given string is an axiom or not. A mere description of
axloms might characterize them fully and yet weakly—which was the prob-
lem with the way theorems in the MIU-system were characterized. We
don't want to have to struggle for an indeterminate—possibly infinite—
length of time, just to find out if some string is an axiom or not. Therefore,
we will define axioms in such a way that there is an obvious decision
procedure for axiomhood of a string composed of p’s, s, and hyphens.
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DEFINITION: xp-—qx— is an axiom, whenever x is composed of hyphens
only.

Note that ‘¢’ must stand for the same string of hyphens in both occurrences.
For example, ——p ~q—-—is an axiom. The literal expression ‘xp—qx-'is
not an axiom, of course (because ‘x’ does not belong to the pg-system); it is
more like a mold in which all axioms are cast—and it is called an axiom
schema.

The pg-system has only one rule of production:

RULE: Suppose x, ¥, and z all stand for particular strings containing only
hyphens. And suppose that xpyqz is known to be a theorem. Then
xpy—qz— is a theorem.

For example, take x to be ‘——, ytobe ‘~——", and z to be *~". The rule tells
us!

If ——p——-q- turns out to be a theorem, then so will
—=p-——-q--

As is typical of rules of production, the statement establishes a causal
connection between the theoremhood of two strings, but without asserting
theoremhood for either one on its own.

A most useful exercise for you is to find a decision procedure for the
theorems of the pg-system. It is not hard; if you play around for a while,
you will probably pick it up. Try it.

The Decision Procedure

I presume you have tried it. First of all, though it may seem too obvious to
mention, I would like to point out that every theorem of the pg-system has
three separate groups of hyphens, and the separating elements are one p,
and one q, in that order. (This can be shown by an argument based on
“heredity”, just the way one could show that all MIU-system theorems had
to begin with M.) This means that we can rule out, from its form alone, a
string such as ——p-——-p——p-——q-————————

Now, stressing the phrase “from its form alone” may seem silly; what
else is there to a string except its form? What else could possibly play a role
in determining its properties? Clearly nothing could. But bear this in mind
as the discussion of formal systems goes on; the notion of “form” will start
to get rather more complicated and abstract, and we will have to think more
about the meaning of the word “form”. In any case, let us give the name
well-formed string to any string which begins with a hyphen-group, then has
one p, then has a second hyphen-group, then a g, and then a final
hyphen-group.

Back to the decision procedure ... The criterion for theoremhood is
that the first two hyphen-groups should add up, in length, to the third
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hyphen-group. For instance, ~~p--q-—~-is a theorem, since 2 plus 2
equals 4, whereas ——p—-q—is not, since 2 plus 2 is not 1. To see why this is
the proper criterion, look first at the axiom schema. Obviously, it only
manufactures axioms which satisfy the addition criterion. Second, look at
the rule of production. If the first string satisfies the addition criterion, so
must the second one—and conversely, if the first string does not satisfy the
addition criterion, then neither does the second string. The rule makes the
addition criterion into a hereditary property of theorems: any theorem
passes the property on to its offspring. This shows why the addition
criterion is correct.

There is, incidentally, a fact about the pg-system which would enable
us to say with confidence that it has a decision procedure, even before
finding the addition criterion. That fact is that the pq-system is not compli-
cated by the opposing currents of lengthening and shortening rules; it has
only lengthening rules. Any formal system which tells you how to make
longer theorems from shorter ones, but never the reverse, has got to have a
decision procedure for its theorems. For suppose you are given a string.
First check whether it's an axiom or not (I am assuming that there is a
decision procedure for axiomhood-—otherwise, things are hopeless). If it
is an axiom, then it is by definition a theorem, and the test is over. So sup-
pose instead that it's not an axiom. Then, to be a theorem, it must have
come from a shorter string, via one of the rules. By going over the various
rules one by one, you can pinpoint not only the rules that could conceivably
produce that string, but also exactly which shorter strings could be its
forebears on the “family tree”. In this way, you “reduce” the problem to
determining whether any of several new but shorter strings is a theorem.
Each of them can in turn be subjected to the same test. The worst that can
happen is a proliferation of more and more, but shorter and shorter,
strings to test. As you continue inching your way backwards in this fashion,
you must be getting closer to the source of all theorems—the axiom
schemata. You just can’t get shorter and shorter indefinitely; therefore,
eventually either you will find that one of your short strings is an axiom, or
you'll come to a point where you're stuck, in that none of your short strings
is an axiom, and none of them can be further shortened by running some
rule or other backwards. This points out that there really is not much deep
interest in formal systems with lengthening rules only; it is the interplay of
lengthening and shortening rules that gives formal systems a certain fasci-
nation.

Bottom-up vs. Top-down

The method above might be called a top-down decision procedure, to be
contrasted with a bottom-up decision procedure, which I give now. It is very
reminiscent of the genie's systematic theorem-generating method for the
MIU-system, but is complicated by the presence of an axiom schema. We
are going to form a “bucket” into whicn we throw theorems as they are
generated, Here is how it is done:
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(1a) Throw the simplest possible axiom (-p-q--) into the
bucket.

(1b) Apply the rule of inference to the item in the bucket, and
put the result into the bucket.

(2a) Throw the second-simplest axiom into the bucket.
(2b) Apply the rule to each item in the bucket, and throw all
results into the bucket.

(3a) Throw the third-simplest axiom into the bucket.
(3b) Apply the rule to each item in the bucket, and throw all
results into the bucket.

etc., etc.

A moment's reflection will show that you can’t fail to produce every
theorem of the pg-system this way. Moreover, the bucket is getting filled
with longer and longer theorems, as time goes on. It is again a consequence
of that lack of shortening rules. So if you have a particular string, such as
——p-——g————— , which you want to test for theoremhood, just follow the
numbered steps, checking all the while for the string in question. If it turns
up—theorem! If at some point everything that goes into the bucket is
longer than the string in question, forget it—it is not a theorem. This
decision procedure is bottom-up because it is working its way up from the
basics, which is to say the axioms. The previous decision procedure is
top-down because it does precisely the reverse: it works its way back down
towards the basics.

Isomorphisms Induce Meaning

Now we come to a central issue of this Chapter—indeed of the book.
Perhaps you have already thought to yourself that the pq-theorems are like
additions. The string ——-p-——-q————- is a theorem because 2 plus 3
equals 5. It could even occur to you that the theorem ——-p———-qg——-—- is a
statement, written in an odd notation, whose meaning is that 2 plus 3 is 5. Is
this a reasonable way to look at things? Well, I deliberately chose '‘p’ to
remind you of ‘plus’, and ‘q’ to remind you of ‘equals’ ... So, does the
string —~p-~—Q————-— actually mean “2 plus 3 equals 577

What would make us feel that way? My answer would be that we have
perceived an isomorphism between pqg-theorems and additions. In the Intro-
duction, the word “isomorphism” was defined as an information-
preserving transformation. We can now go into that notion a little more
deeply, and see it from another perspective. The word “isomorphism”
applies when two complex structures can be mapped onto each other, in
such a way that to each part of one structure there is a corresponding part
in the other structure, where “corresponding” means that the two parts
play similar roles in their respective structures. This usage of the word
“isomorphism” is derivéd from a more precise notion in mathematics.
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It is cause for joy when a mathematician discovers an isomorphism
between two structures which he knows. It is often 2 “bolt from the blue”,
and a source of wonderment. The perception of an isomorphism between
two known structures is a significant advance in knowledge—and I claim
that 1t is such perceptions of isomorphism which create meanings in the
minds of people. A final word on the perception of isomorphisms: since
they come in many shapes and sizes, figuratively speaking, it is not always
totally clear when you really have found an isomorphism. Thus, “isomor-
phism” is a word with all the usual vagueness of words—which is a defect
but an advantage as well.

In this case, we have an excellent prototype for the concept of isomor-
phism. There is a “lower level” of our isomorphism—that is, a mapping
between the parts of the two structures:

p <= plus
q &= equals
- &> one
—-— & two
——— <= three

eLc.

This symbol-word correspondence has a name: interpretation.

Secondly, on a higher level, there is the correspondence between true
statements and theorems. But—note carefully—this higher-level corre-
spondence could not be perceived without the prior choice of an interpre-
tation for the symbols. Thus it would be more accurate to describe it as a
correspondence between true statements and interpreted theorems. In any

case we have displayed a two-tiered correspondence, which is typical of all
isomorphisms.

When you confront a formal system you know nothing of, and if you
hope to discover some hidden meaning in it, your problem is how to assign
interpretations to its symbols in a meaningful way—that is, in such a way
that a higher-level correspondence emerges between true statements and
theorems. You may make several tentative stabs in the dark before finding
a good set of words to associate with the symbols. It is very similar to
attempts to crack a code, or to decipher inscriptions in an unknown lan-
guage like Linear B of Crete: the only way to proceed is by trial and error,
based on educated guesses. When you hit a good choice, a “meaningful”
choice, all of a sudden things just feel right, and work speeds up enor-
mously. Pretty soon everything falls into place. The excitement of such an
experience is captured in The Decipherment of Linear B by John Chadwick.

But it is uncommon, to say the least, for someone to be in the position
of “decoding” a formal system turned up in the excavations of a ruined
cvilization! Mathematicians (and more recently, linguists, philosophers,
and some others) are the only users of formal systems, and they invariably
have an interpretation in mind for the formal systems which they use and
publish. The idea of these people is to set up a formal system whose
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theorems reflect some portion of reality isomorphically. In such a case, the
choice of symbols is a highly motivated one, as is the choice of typographi-
cal rules of production. When I devised the pg-system, I was in this
position. You see why I chose the symbols I chose. It is no accident that
theorems are isomorphic to additions; it happened because I deliberately
sought out a way to reflect additions typographically.

Meaningless and Meaningful Interpretations

You can choose interpretations other than the one I chose. You need not
make every theorem come out true. But there would be very little reason to
make an interpretation in which, say, all theorems came out false, and
certainly even less reason to make an interpretation under which there is
no correlation at all, positive or negative, between theoremhood and truth.
Let us therefore make a distinction between two types of interpretations for
a formal system. First, we can have a meaningless interpretation, one under
which we fail to see any isomorphic connection between theorems of the
system, and reality. Such interpretations abound—any random choice at all
will do. For instance, take this one:

p &= horse
q <= happy
- &= apple

Now —-p-q-—- acquires a new interpretation: “apple horse apple happy
apple apple”—a poetic sentiment, which might appeal to horses, and might
even lead them to favor this mode of interpreting pg-strings! However, this
interpretation has very little “meaningfulness”; under interpretation,
theorems don’t sound any truer, or any better, than nontheorems. A horse

might enjoy “happy happy happy apple horse” (mapped onto qqq-p)
just as much as any interpreted theorem.

The other kind of interpretation will be called meaningful. Under such
an interpretation, theorems and truths correspond—that is, an isomor-
phism exists between theorems and some portion of reality. Thatis why itis
good to distinguish between interpretations and meanings. Any old word can
be used as an interpretation for ‘p’, but ‘plus’ is the only meaningful choice
we've come up with. In summary, the meaning of ‘p’ seems to be ‘plus/,
though it can have a million different interpretations.

Active vs. Passive Meanings

Probably the most significant fact of this Chapter, if understood deeply, is
this: the pg-system seems to force us into recognizing that symbols of a formal
system, though inatially without meaning, cannot avoid taking on “meaning” of sorts,
at least if an isomorphism is found. The difference between meaning in a
formal system and in a language is a very important one, however. It is this:
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in a language, when we have learned a meaning for a word, we then make
new statements based on the meaning of the word. In a sense the meaning
becomes active, since it brings into being a new rule for creating sentences.
This means that our command of language is not like a finished product:
the rules for making sentences increase when we learn new meanings. On
the other hand, in a formal system, the theorems are predefined, by the
rules of production. We can choose “meanings” based on an isomorphism
(if we can find one) between theorems and true statements. But this does
not give us the license to go out and add new theorems to the established
theorems. That is what the Requirement of Formality in Chapter 1 was
warning you of.

In the MIU-system, of course, there was no temptation to go beyond
the four rules, because no interpretation was sought or found. But here, in,
our new system, one might be seduced by the newly found “meaning” of
each symbol into thinking that the string

e e e R

is a theorem. At least, one might wish that this string were a theorem. But
wishing doesn’t change the fact that it isn’t. And it would be a serious
mistake to think that it “must” be a theorem, just because 2 plus 2 plus 2
plus 2 equals 8. It would even be misleading to attribute it any meaning at
all, since it is not well-formed, and our meaningful interpretation is entirely
derived from looking at well-formed strings.

In a formal system, the meaning must remain passive; we can read each
string according to the meanings of its constituent symbols, but we do not
have the right to create new theorems purely on the basis of the meanings
we've assigned the symbols. Interpreted formal systems straddle the line
between systems without meaning, and systems with meaning. Their
strings can be thought of as “expressing” things, but this must come only as
a consequence of the formal properties of the system.

Double-Entendrel

And now, I want to destroy any illusion about having found the meanings
for the symbols of the pg-system. Consider the following association:

p < equals
q €= taken from
- &= one

—— &> two

etc.

Now, ==p-—waq—www- has a new interpretation: “2 equals 3 taken from
5", Of course it is a true statement. All theorems will come out true under
this new interpretation. It is just as meaningful as the old one. Obviously, it
is silly to ask, “But which one is the meaning of the string?” An interpreta-
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tion will be meaningful to the extent that it accurately reflects some iso-
morphism to the real world. When different aspects of the real world are
isomorphic to each other (in this case, additions and subtractions), one
single formal system can be isomorphic to both, and therefore can take on
two passive meanings. This kind of double-valuedness of symbols and
strings is an extremely important phenomenon. Here it seems trivial,
curious, annoying. But it will come back in deeper contexts and bring with
it a great richness of ideas.

Here is a summary of our observations about the pg-system. Under
either of the two meaningful interpretations given, every well-formed
string has a grammatical assertion for its counterpart—some are true, some
false. The idea of well-formed strings in any formal system is that they are
those strings which, when interpreted symbol for symbol, yield grammatical
sentences. (Of course, it depends on the interpretation, but usually, there is
one in mind.) Among the well-formed strings occur the theorems. These
are defined by an axiom schema, and a rule of production. My goal in
inventing the pqg-system was to imitate additions:; I wanted every theorem
to express a true addition under interpretation; conversely, I wanted every
true addition of precisely two positive integers to be translatable into a
string, which would be a theorem. That goal was achieved. Notice, there-
fore, that all false additions, such as “2 plus 3 equals 6”7, are mapped into
strings which are well-formed, but which are not theorems.

Formal Systems and Reality

This is our first example of a case where a formal system is based upon a
portion of reality, and seems to mimic it perfectly, in that its theorems are
isomorphic to truths about that part of reality. However, reality and the
formal system are independent. Nobody need be aware that there is an
isomorphism between the two. Each side stands by itself—one plus one
equals two, whether or not we know that ~-p~-q-— is a theorem; and
—p-q--is still a theorem whether-or not we connect it with addition.

You might wonder whether making this formal system, or any formal
system, sheds new light on truths in the domain of its interpretation. Have
we learned any new additions by producing pg-theorems? Certainly not;
but we have learned something about the nature of addition as a
process—namely, that it is easily mimicked by a typographical rule govern-
ing meaningless symbols. This still should not be a big surprise since
addition is such a simple concept. It is a commonplace that addition can be
captured in the spinning gears of a device like a cash register.

But it is clear that we have hardly scratched the surface, as far as
formal systems go; it is natural to wonder about what portion of reality can
be imitated in its behavior by a set of meaningless symbols governed by
formal rules. Can all of reality be turned into a formal system? In a very
broad sense, the answer might appear to be yes. One could suggest, for
instance, that reality is itself nothing but one very complicated formal
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system. Its symbols do not move around on paper, but rather in a three-
dimensional vacuum (space); they are the elementary particles of which
everything is composed. (Tacit assumption: that there is an end to the
descending chain of matter, so that the expression “elementary particles”
makes sense.) The “typographical rules” are the laws of physics, which tell
how, given the positions and velocities of all particles at a given instant, to
modify them, resulting in a new set of positions and velocities belonging to
the “next” instant. So the theorems of this grand formal system are the
possible configurations of particles at different times in the history of the
universe. The sole axiom is (or perhaps, was) the original configuration of
all the particles at the “beginning of time”. This is so grandiose a concep-
tion, however, that it has only the most theoretical interest; and besides,
quantum mechanics (and other parts of physics) casts at least some doubt
on even the theoretical worth of this idea. Basically, we are asking if the
universe operates deterministically, which is an open question.

Mathematics and Symbol Manipulation

Instead of dealing with such a big picture, let's limit ourselves to mathematics
as our “real world”. Here, a serious question arises: How can we be sure, if
we've tried to model a formal system on some part of mathematics, that
we've done the job accurately—especially if we're not one hundred per cent
familiar with that portion of mathematics already? Suppose the goal of the
formal system is to bring us new knowledge in that discipline. How will we
know that the interpretation of every theorem is true, unless we've proven
that the isomorphism is perfect? And how will we prove that the isomor-
phism is perfect, if we don’t already know all about the truths in the
discipline to begin with?

Suppose that in an excavation somewhere, we actually did discover
some mysterious formal system. We would try out various interpretations
and perhaps eventually hit upon one which seemed to make every theorem
come out true, and every nontheorem come out false. But this is something
which we could only check directly in a finite number of cases. The set of
theorems is most likely infinite. How will we know that all theorems express
truths under this interpretation, unless we know everything there is to
know about both the formal system and the corresponding domain of
interpretation?

It is in somewhat this odd position that we will find ourselves when we
attempt to match the reality of natural numbers (i.e., the nonnegative
integers: 0, 1, 2, . . .) with the typographical symbols of a formal system. We
will try to understand the relationship between what we call “truth” in
number theory and what we can get at by symbol manipulation.

So let us briefly look at the basis for calling some statements of number
theory true, and others false. How much is 12 times 12? Everyone knows it
is 144. But how many of the people who give that answer have actually at
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any time in their lives drawn a 12 by 12 rectangle, and then counted the
little squares in it? Most people would regard the drawing and counting as
unnecessary. They would instead offer as proof a few marks on paper, such
as are shown below:

12
x12

24
12

144

And that would be the “proof”. Nearly everyone believes that if you
counted the squares, you would get 144 of them; few people feel that the
outcome is in doubt.

The conflict between the two points of view comes into sharper
focus when you consider the problem of determining the value of
987654321 x 123456789. First of all, it is virtually impossible to construct
the appropriate rectangle; and what is worse, even if it were constructed,
and huge armies of people spent centuries counting the little squares, only
a very gullible person would be willing to believe their final answer. Itis just
too likely that somewhere, somehow, somebody bobbled just a little bit. So
is it ever possible to know what the answer is? If you trust the symbolic
process which involves manipulating digits according to certain simple
rules, yes. That process is presented to children as a device which gets the
right answer; lost in the shuffle, for many children, are the rhyme and
reason of that process. The digit-shunting laws for multiplication are based
mostly on a few properties of addition and multplication which are as-
sumed to hold for all numbers.

The Basic Laws of Arithmetic

The kind of assumption I mean is illustrated below. Suppose that you lay
down a few sticks:

forrrr bl

Now you count them. At the same time, somebody else counts them, but
starting from the other end. Is it clear that the two of you will get the same
answer? The result of a counting process is independent of the way in
which it is done. This is really an assumption about what counting is. It
would be senseless to try to prove it, because it is so basic; either you see it
or you don’'t—but in the latter case, a proof won't help you a bit.

From this kind of assumption, one can get to the commutativity and
associativity of addition (i.e., first that & 4+ ¢ =¢ + b always, and second
that b+ (c +d) =(b + ¢} +d always). The same assumption can also lead
you to the commutativity and associativity of multiplication; just think of
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many cubes assembled to form a large rectangular solid. Multiplicative
commutativity and associativity are just the assumptions that when you
rotate the solid in various ways, the number of cubes will not change. Now
these assumptions are not verihable in all possible cases, because the
number of such cases is infinite. We take them for granted; we believe them
(if we ever think about them) as deeply as we could believe anything. The
amount of money in our pocket will not change as we walk down the street,
jostling it up and down; the number of books we have will not change if we
pack them up in a box, load them into our car, drive one hundred miles,
unload the box, unpack it, and place the books in a new shelf. All of this is
part of what we mean by number.

There are certain types of people who, as soon as some undeniable fact
is written down, find it amusing to show why that “fact” is false after all. I
am such a person, and as soon as I had written down the examples above
involving sticks, money, and books, 1 invented situations in which they were
wrong. You may have done the same. It goes to show that numbers as
abstractions are really quite different from the everyday numbers which we
use.

People enjoy inventing slogans which violate basic arithmetic but which
illustrate “deeper” truths, such as “1 and 1 make 17 {for lovers), or “1 plus 1
plus 1 equals 17 (the Trinity). You can easily pick holes in those slogans,
showing why, for instance, using the plus-sign is inappropriate in both
cases. But such cases proliferate. Two raindrops running down a window-
pane merge; does one plus one make one? A cloud breaks up into two
clouds—more evidence for the same? It is not at all easy to draw a sharp
line between cases where what is happening could be called “addition”, and
where some other word is wanted. If you think about the question, you will
probably come up with some criterion involving separation of the objects in
space, and making sure each one is clearly distinguishable from all the
others. But then how could one count ideas? Or the number of gases
comprising the atmosphere? Somewhere, if you try to look it up, you can
probably find a statement such as, “There are 17 languages in India, and
462 dialects.” There is something strange about precise statements like
that, when the concepts “language” and “dialect” are themselves fuzzy.

Ideal Numbers

Numbers as realities misbehave. However, there is an ancient and innate
sense in people that numbers ought not to misbehave. There is something
clean and pure in the abstract notion of number, removed {rom counting
beads, dialects, or clouds; and there ought to be a way of talking about
numbers without always having the silliness of reality come in and intrude.
The hard-edged rules that govern “ideal” numbers constitute arithmetic,
and their more advanced consequences constitute number theory. There is
only one relevant question to be asked, in making the transition from
numbers as practical things to numbers as formal things. Once you have
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FIGURE 13. Liberation, by M. C. Escher (lithograph, 1955).



decided to try to capsulize all of number theory in an ideal system, is it
really possible to do the job completely? Are numbers so clean and crystal-
line and regular that their nature can be compietely captured in the rules of
a formal system? The picture Liberation (Fig. 13), one of Escher’s most
beautiful, is a marvelous contrast between the formal and the informal,
with a fascinating transition region. Are numbers really as free as birds? Do
they suffer as much from being crystallized into a rule-obeying system? Is
there a magical transition region between numbers in reality and numbers
on paper?

When I speak of the properties of natural numbers, I don’t just mean
properties such as the sum of a particular pair of integers. That can be
found out by counting, and anybody who has grown up in this century
cannot doubt the mechanizability of such processes as counting, adding,
multiplying, and so on. I mean the kinds of properties which mathemati-
cians are interested in exploring, questions for which no counting-process
is sufficient to provide the answer—not even theoretically sufficient. Let us
take a classic example of such a property of natural numbers. The state-
ment is: “There are infinitely many prime numbers.” First of all, there is no
counting process which will ever be able to confirm, or refute, this asser-
tion. The best we could do would be to count primes for a while and
concede that there are “a lot™ But no amount of counting alone would ever
resolve the question of whether the number of primes is finite or infinite.
There could always be more. The statement—and it is called “Euclid’s
Theorem” (notice the capital “T”)—is quite unobvious. It may seem
reasonable, or appealing, but it is not obvious. However, mathematicians
since Euclid have always called it true. What is the reason?

Euclid’'s Proof

The reason is that reasoning tells them it is so. Let us follow the reasoning
involved. We will look at a variant of Euclid’s proof. This proof works by
showing that whatever number you pick, there is a prime larger than it
Pick a number—N. Multiply all the positive integers starting with 1 and
ending with N;in other words, form the factorial of N, written “N1”. What
you get is divisible by every number up to N. When you add 1 to N, the
result

can’t be a multiple of 2 (because it leaves 1 over,
when you divide by 2);

can’t be a multiple of 3 (because it leaves 1 over,
when you divide by 3);

can't be a multiple of 4 (because it leaves 1 over,
when you divide by 4);
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can’t be a muliiple of N (because it leaves 1 over,
when you divide by N);

In other words, N! + 1, if it is divisible at all (other than by 1 and itself),
only 1s divisible by numbers greater than N. So either it is itself prime, or its
prime divisors are greater than N. But in either case we've shown there
must exist a prime above N. The process holds no matter what number N
is. Whatever N is, there is a prime greater than N. And thus ends the
demonstration of the infinitude of the primes.

This last, step, incidentally, is called generalization, and we will meet it
again later in a more formal context. It is where we phrase an argument in
terms of a single number (N), and then point out that N was unspecified
and therefore the argument is a general one.

Euclid’s proof is typical of what constitutes “real mathematics”. It is
simple, compelling, and beautiful. It illustrates that by taking several rather
short steps one can get a long way from one’s starting point. In our case, the
starting points are basic ideas about multiplication and division and so
forth. The short steps are the steps of reasoning. And though every
individual step of the reasoning seems obvious, the end result is not obvi-
ous. We can never check directly whether the statement is true or not; yet
we believe it, because we believe in reasoning. If you accept reasoning,
there seems to be no escape route; once you agree to hear Euclid out, you'll
have to agree with his conclusion. That’s most fortunate—because it means
that mathematicians will always agree on what statements to label “true”,
and what statements to label “false”.

This proof exemplifies an orderly thought process. Each statement is
related to previous ones in an irresistible way. This is why it is called a
“proof’’ rather than just “good evidence”. In mathematics the goal is
always to give an ironclad proof for some unobvious statement. The very
fact of the steps being linked together in an ironclad way suggests that
there may be a patterned structure binding these statements together. This
structure can best be exposed by finding a new vocabulary—a stylized
vocabulary, consisting of symbols—suitable only for expressing statements
about numbers. Then we can look at the proof as it exists in its translated
version. It will be a set of statements which are related, line by line, in some
detectable way. But the statements, since they're represented by means of a
small and stylized set of symbols, take on the aspect of patterns. In other
words, though when read aloud, they seem to be statements about numbers
and their properties, still when looked at on paper, they seem to be abstract
patterns—and the line-by-line structure of the proof may start to look like a
slow transformation of patterns according to some few typographical rules.

Getting Around Infinity

Although Euclid’s proof is a proof that 2/l numbers have a certain property,
it avoids treating each of the infinitely many cases separately. It gets around
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it by using phrases like “whatever N is”, or “no matter what number N is”.
We could also phrase the proof over again, so that it uses the phrase “all N”.
By knowing the appropriate context and correct ways of using such
phrases, we never have to deal with infinitely many statements. We deal
with just two or three concepts, such as the word “all”—which, though
themselves finite, embody an infinitude; and by using them, we sidestep the
apparent problem that there are an infinite number of facts we want to
prove.

We use the word “all” in a few ways which are defined by the thought
processes of reasoning. That is, there are rules which our usage of “all”
obeys. We may be unconscious of them, and tend to claim we operate on
the basis of the meaning of the word; but that, after all, is only a circumlocu-
tion for saying that we are guided by rules which we never make explicit.
We have used words all our lives in certain patterns, and instead of calling
the patterns “rules”, we attribute the courses of our thought processes to
the “meanings” of words. That discovery was a crucial recognition in the
long path towards the formalization of number theory.

If we were to delve into Euclid’s proof more and more carefully, we
would see that it is composed of many, many small—almost infinitesimal—
steps. If all those steps were written out line after line, the proof would
appear incredibly complicated. To our minds it is clearest when several
steps are telescoped together, to form one single sentence. If we tried to
look at the proof in slow motion, we would begin to discern individual
frames. In other words, the dissection can go only so far, and then we hit
the “atomic” nature of reasoning processes. A proof can be broken down
into a series of uny but discontinuous jumps which seem to flow smoothly
when perceived from a higher vantage point. In Chapter VIII, I will show
one way of breaking the proof into atomic units, and you will see how
incredibly many steps are involved. Perhaps it should not surprise you,
though. The operations in Euclid’s brain when he invented the proof must
have involved millions of neurons (nerve cells), many of which fired several
hundred times in a single second. The mere utterance of a sentence
involves hundreds of thousands of neurons. If Euclid’s thoughts were that
complicated, it makes sense for his proof to contain a huge number of
steps! (There may be little direct connection between the neural actions in
his brain, and a proof in our formal system, but the complexities of the two
are comparable. It is as if nature wants the complexity of the proof of the
infinitude of primes to be conserved, even when the systems involved are
very different from each other.)

In Chapters to come, we will lay out a formal system that (1) includes a
stylized vocabulary in which all statements about natural numbers can be
expressed, and (2) has rules corresponding to all the types of reasoning
which seem necessary. A very important question will be whether the rules
for symbol manipulation which we have then formulated are really of equal
power (as far as number theory is concerned) to our usual mental reason-
ing abilities—or, more generally, whether it is theoretically possible to
attain the level of our thinking abilities, by using some formal system.
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