...........................................................................................................................................
hear

What

C-o-u-n-t-s

How EVERY BRAIN
| s HARDWIRED

F OR MATH

Brian Butterworth

THE FREE PRESS




BorRN TO COUNT

A child, at birth, is a candidare for humanity; it cannot become

human in isolation.

FRENCH PsYcHOLOGIST HENRI PIERON, 1959

I argued in Chapter 2 that everyone counts, not because everyone has
the opportunity to learn this special skill, but because we are borg with
special circuits in our brains for categorizing the world in terms of
numerosities. Whether a culture has formal arithmetical education or
not, whether the lives of its members involve frequent use of numbers
or not, indeed, whether its language containg special words for num-
bers or not, people will be able ro carry out basic numerical operations.

This Mathematical Brain hypothesis is a claim abour the relation-
ship between nature and nurture in the domain of numerical abilities.
I'show it graphically in Figure 3.1. Very simply, nature provides an
mnner core of ability for categorizing small collections of objects in
terms of their numerosities, which I have called the Number Module.
For more advanced skills, we need nurture: acquiring the conceptual
tools provided by the culture in which we live,

There are many precedents for specialized innate abilities. For
example, many perceptual capacities are already working in the new-
born baby: babies can see colours, distinguish speech sounds from
non-speech sounds, and, within a few days or weeks, focus their eyes
and see clearly, It is not surprising that newborns can use their five
senses, but are they able ro categorize the world in a more abstract
way? We now know that newborns categorize the world in terms of
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Figure 3.1 The newborn infant can use subitizing (the ability to telf numerosity at a
gtance, without counting) to discriminate and identify the number of things in a visual
array, up to about 4. K has not, of course, had the opportunity to acquire conceptual
tools such as counting words or finger patierns. -

objects that have a continuous existence in time—if an object disap-
pears, they stare in surprise. They also have expectations about how
these objects will behave: one object cannot pass through another, for
example. Babies will have had no opportunity to learn about these
things: they seem to be built into the brain as part of the genetic code,
and they kick into life as soon as the baby leaves the womb. However,
being born with a capacity does not mean that it will be immediately
evident. For example, we are all born with the capacity to grow pubic
hair but it is not present in the newborn, appearing only after about
12 or 13 years of maturation.

The Piagetian Alternative

The influential Swiss psychologist Jean Piaget believed that our rea-
soning capacities emerged slowly, each new concept building on those
previously developed. Numbers, he believed, are intimately connected
with the development of the ability to reason logically and abstractly,
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though the ability for full abstract reasoning, in what Piaget called the
stage of ‘formal operations’, was thought to emerge at about the same
time as pubic hair.

Our hypothesis is that the construction of number goes hand-in-
hand with the development of logic, and that a pre-numerical
period corresponds to a pre-logical level. Our results do, in fact,
show that number is organised, stage after stage, in close connec-
tion with gradual elaboration of systems of inclusion (hierarchy of
logical classes) and systems of asymmetrical relations (qualitative
seriations), the sequence of numbers thus resulting from an opera-
tional synthesis of classification and seriation. In our view, logical
and arithmetical operations therefore constitute a single system
that is psychologically natural, the second resulting from a gener-
alisation and fusion of the first, under two complementary head-
ings of inclusion of classes and seriation of relations, quality being
disregarded.!

He believed that our idea of numerosity was built on more basic
capacities. These included the capacity to reason transitively—that is,
the child should be able to reason that if A is bigger than B, and B is
bigger than C, then A is bigger than C. Without this capacity, the
child could not put the numbers in order of size, which is clearly fun-
damental. A second capacity the child must develop is the idea that
the number of things in a collection is ‘conserved’, to use his technical
term, unless a new object is added to the collection or an object sub-
tracted from it. Merely moving the objects around-—for example,
spreading them out so they take up more room-—does not affect num-
ber. Even more basic than either of these two capacities, as Piaget
pointed out, is the ability to abstract away from the perceptual prop-
erties of the things in the collection. To grasp the numerosity of a col-
lection, one needs to ignore ali the particular features of the objects in
it: their colour, their shape, their size, even what they are. A collection
of three cats has the same numerosity as a collection of three chairs,
or indeed of three wishes. The idea of number is abstract, very
abstract. And the ideas of ‘same number’ or ‘different numbers’ are
abstractions from abstractions.
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According to Piaget, the emergence of the capacity for numeros-
ity depends on the development of the necessary prior capacities, what
Piagetians call ‘prerequisites’. It also depends, as do many conceptual
and logical abilities, on interacting with the world. The concept of
numerosity could emerge as a result of manipulating objects, lining up
collections to establish one-to-one correspondence between the mem-
bers of the two collections, for sharing out sweets or toys.

The Empiricist Alternative
The philosopher Philip Kitcher makes the child’s manipulation of objects
in the environment the foundation of his approach to mathematics:

I begin with an elementary phenomenon. A young child is shuf-
fling blocks on the floor. A group of his blocks is segregated and
inspected, and then merged with a previously scrutinized group of
three blocks. The event displays a small part of the mathematical
structure of reality, and may even serve for the apprehension of
mathematical structure. Children come to learn the meanings of
‘set’, ‘number’, ‘addition’ and to accept basic truths of arithmetic
by engaging in activities of collecting and segregating, Rather than
interpreting these activities as an avenue to knowledge about
abstract objects, we can think of the rudimentary arithmetical
truths as true in virtue of the operations themselves.?

This approach is a version of ‘empiricism’, which claims that all ideas,
all concepts, are derived from sensory experiences, and abstract ideas
are constructed by generalizing from many particular experiences. On
this account, children can have no grasp of numerical concepts until
they are able to manipulate objects, segregate one group from others,
scrutinize, remember the results of the scrutiny (which cannot be a
number, since this is what they are setting out to explain), and merge
these results with others (whatever this may mean). It is not clear at
what age Kitcher believes that children are able to do these things,
since he draws on no (empirical) studies of how children actually do
acquire arithmetical concepts, but it cannot be earlier than about two
or three years of age.

The approaches taken by both Piaget and Kitcher imply that cate-




BoRN TO COUNT

gorizing the world is going to come quite late in the child’s develop-
ment. Piaget thought that the number concept emerged at abour the
age of four or five. After all, how can an infant—newly arrived in the
world, unable to speak, and with the world just a buzzing confusion
of colours and noises—use number to categorize what it sees or
hears? How could it possibly add or sabtract? The obvious, common-
sense answer is that the infant cannot.

In this chapter, we shall see that the obvious answer is the wrong
answer. The truth is much more surprising. Infants as young as
the first week of life do indeed categorize the world in terms of
numerosities, and infants of a few weeks, too young to have learned
about arithmetic, can add and subtract. We shall see how counting
provides the conceptual tools that take the child beyond what can be
achieved by using the Number Module alone, beyond the zbility to
recognize numerosities, to the key idea of a sequence of numerosities
ordered by size.

INFANT NUMEROSITIES

A baby just a day old is lying on her side in a hospital bassinet, quiet
but alert. About 18 cm from her eyes is a white card with two circular
black dots on it. She looks at the card. The card is replaced by
another card with two similar black dots, but more widely spaced.
The baby stares intently at it. The second card is replaced by the first,
and the baby looks at it. All the while an experimenter, out of sight of
the baby, is measuring how long she spends looking at each card. As
the two cards continue to be presented alternately, the baby begins to
lose interest and looks at the cards for shorter and shorter periods.
Then a new card is presented, a card with three black dots in a line,
and the baby immediately looks longer at this new card, twice as long
in fact as at the previous card. Why? Does the baby just prefer look-
ing at more black dots than at fewer? Two new cards are shown to
the baby, one at a time. Each card now has three dots in a line, but on
one of them the dots are more widely spaced. After a few trials the
baby seems to lose interest and barely glances at the cards; then a new
card is shown. This time with just two dots. The baby again looks
longer at this new card. Is it just something new? To be new for the
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baby, she has to have a memory of what went before. What is repre-
sented in this memory? Is it the fact that there were black dots, or a
white card? Is it the pattern of dots? Or could it be the number of
black dots?3

This technique is known as ‘habituation——dishabituation’, and it
makes use of the fact that babies like novelty and will look longer at
new things: the same thing over and over again causes them to habity-
ate—lose interest—while a new thing causes them to regain interest—
dishabituate. What makes this technique particularly useful for
studying the mind of the baby comes when you ask what counts ag
new for the baby. That is, what categories can the baby use for classi-
fying her experiences? We know that newborns can make subtle dis-
tinctions among sounds. For example, they can categorize sounds into
P sounds and B sounds. If they hear a series of Ps they habituate, but
when they then hear 2 B sound, they get interested again.* We know
they can categorize by colour and by shape.’

But how do we know to what aspect of novelty the baby is
responding in the dot task? It could be any new stimulus. Three
American experimenters, Prentice Starkey, Rochel Gelman, and Eliza-
beth Spelke,$ carried out 4 similar type of experiment with slightly
older children, 6-8 months, but instead of black dots-they used pic-
tures of various objects: an orange, a key, a comb, an egg-beater, and
so on. Instead of a card with two dots close together alternating with
one with two dots far apart, each card had two objects, but different
objects each time. The dishabituating card also had new pictures on
it, but there were three pictares this time. Since each card was new for
the babies, would they have mentally categorized the habituating
cards as showing two things, so that when a card with three things
Was presented, they would regain interesr and look longer? If they did
look longer, it could not be because of mere novelty, since each card
was new. It turned out thar babies did look significantly longer at the
card with three pictures on it

Perhaps babies just like to see more pictures and this is why they
looked longer, However, Starkey and hig colleagues used the other
sequence as well: a habituating series of cards with three pictures on
them, followed by a dishabituating card with just two. Again the
babies looked longer at the new number. The babies seemed to be
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sensitive to the number of pictures on the card. They categorized
what they saw in a way that is quite abstract: the particular features
of each picture—the colour, the objects depicted, their size, their
brightness—which change with every card, have to be disregarded.

Stationary pictures of objects have a pattern: one object is a point,
two objects will form a line, and three may form a triangle and four 2
quadrilateral. Perhaps babies are using some form of visual pattern
perception rather than numerosity.” One fascinating study puts paid
to that idea. Two Dutch psychologists, Erik van Loosbroek and Ad
Smitsman from the Catholic University of Nijmegen, showed babies
of § and 13 months not still pictures, but moving pictures. The pic-
cures were of two, three, or four rectangles in shades of grey that
moved in random trajectories on a computer monitor. From time t0
time one rectangle would appear to pass in front of another, occlud-
ing part of it. As in the previous studies, after a while the babies
looked at the screen for less time, but when the number of rectangles
was changed, either by adding one more rectangle or taking one
away, they started to look for significantly longer. They cannot have
been responding to a change in the pattern, since each of the rectan-
gles was in constant motion, so they must have extracted the
numerosity from the moving displays.®

We are beginning to find evidence that the infant’s sensitivity to
numerosity goes beyond collections of objects, still or moving. They
are also sensitive to collections of actions. These are very different in
kind from objects. Where does one action end and the other begin,
and how are actions to be categorized? If I deal from a deck of cards,
five cards to five players, is there one action—the deal—or twenty-five
actions—each card?

The following remarkable experiment was carried out by Karen
Wynn, a brilliant young researcher at the University of Arizona. The
baby, this time about six months old, well before he has spoken his
first words, is looking at a display stage wich a puppet on it. In the
habituation phase he sees the puppet make two jumps, with a short .
pause between the jumps. As with repeated presentation of two pic-
tures, so the looking time gets shorter with each jump. The puppet
makes three jumps, and the looking time nearly doubles. Again the
reverse was used as a conerok: three jumps followed by two jumps.’
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I have focused on numerosities of visible collections, but num-
erosities are supposed to be abstractions, distinct from perceptual
properties. Are babies sensitive to the number of sounds, say the beats
of a drum? Prentice Starkey’s team used a virtuoso version of the
habituation rechnique. They habituated babies to pictures of two dots
or three dots, then showed them a black disk that emitted either two
or three drumbeats. If the babies had beeg habituated to two dots
they would stare longer at the black disk when it emitted two beats; if
habituated to three dots, they would stare longer when it emitted
three beats. For the babies to behave like this, they would have to
have formed a mental representation that puts the mumber of dots
and the number of beats into the same category, a category that is
independent of whether the things were seen or heard.

It seems as though anything that a baby can think of as separate
entities it can enumerate. Its behaviour can be guided by the number
of things that it experiences independently of what those things are. It
is born with the ability to form a representation of the numerosity of
a collection of things, and because its behaviour changes when the
number changes, it can also tell whether a new collection has the
Same numerosity as a previous collection. This in turn implies that it
can store in its memory and retrieve, at least in the short term, the
numerosity of the previous collection.

Is there an upper limit to the baby’s concept of numerosity? Can it
enumerate 4 or 10 or 100? The maximum seems to be 3, though in
some tasks the baby can distinguish ‘more thag 3’ from 3, and it has
been claimed that in certain circumstances babies can distinguish 5
from 4. However, we cannot be sure that this limitation lies in the
baby’s idea of numerosity rather than in its ability to perceive and to
remember what has been perceived. Our understanding that num-
erosities have no limit seems to depend on our sense that it is always
possible to keep adding one. Thus any limitation on the infant’s part
may have more to do with its ability to carry out successive additions,
and the chain of reasoning needed to get from that to the idea that
numbers have no upper limit,

The most likely limitation is the ability to take in the numerosity
of a visual array of objects at a glance, and without counting. Even in
adults, the limit is about 4. This seems to be a specialized process in
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visual perception,® which is usually given the name subitizing. Stanis-
las Dehaene, a psychologist, and Jean-Pierre Changeux, a neuroscien-
tist, working in Paris, have created a computer model of this process
which very simply and effectively extracts the number of objects from
a visual display, disregarding their size, shape, or location. The repre-
sentation that is extracted can then be trained to make comparisons.
It is tempting to think that something like this has been built into the
visual processing system of the infant’s brain 1!

INFANT ARITHMETIC

Possessing a concept of numerosity implies more than just being able
to decide whether two collections do or do not have the same
numerosity. It implies an ability to detect a change in numerosity
when new members are added to the collection, or old members taken
away. Are babies born with the ability to do this? How can we tell?
We certainly cannot ask them: not only can babies not speak, they
cannot understand speech either. This lack may not prevent babies
from having arithmetical expectations based on their concept of
numerosity. The problem is to discover whether they do.

Imagine now that you see me put one doll into a box you know
to be empty, and then I add another. You will expect to find two
dolls in the box. This expectation will be based on your knowledge
of arithmetic, among other things (such as the fact that objects do
not just appear or disappear). If I show you that there is just one
doll in the box, your expectations will be violated and you might
stare longer into the box, wondering what could have happened to
the other doll.”? Similarly, if you see me put two dolls into a previ-
ously empty box and then remove one, you will expect there to be
one doll left. Again, this will be an arithmetical expectation. If you
now find two dolls in the box this expectation will be violated, and
you may again show some surprise. The question now can be

framed as follows: will a baby have the same expectations as you?

Will it expect adding one doll to another doll to produce two dolls
and show surprise if it does not? Will the baby expect taking one
doll away from two dolls to leave exactly one doll, and show sur-
prise if it does not?
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This is what Karen Wynn set out to test in her Infant Cognition
Laboratory at the University of Arizona.!® She made use of the fact
that babies look longer at events that violate their expectations; to
discover whether babies had arithmetical expectations turned out
to be really very simple. Babies of 4 to 5 months were seared facing a
small stage. In the addition experiment, they would see one Mickey
Mouse dol! on the stage; then a screen would come up concealing the
doll. A hand would then appear holding a second doll, which would
be placed behind the screen. The screen would come down revealing
either two dolls, which is what the babies would expect if they had
addition expectations, or one doll, which is what they would not
expect. Did they look longer at the single doll? Indeed they did. Per-
haps, the sceptical reader is already asking, one doll was for some rea-
son more interesting for the babies to look at, and that’s why they
looked at it longer.

Wynn had two ways of countering this potential criticism. First,
she pre-tested the babies by measuring their looking times at one doll
and at two dolls. No difference. Second, she carried out a subtraction
experiment. This time the babies looked at a stage with two dolls on
it. The screen came up, but now a hand went behind the screen and
could be seen to remove a doll. The screen came down to reveal one
doll, which is in line with a subtraction expectation, or two dolls,
which is not. Would the babies now look longer at two dolls? Indeed
they did, suggesting that they expected that two dolls, take away one
doll, would leave just one doll.

Now we have a nice control for which display the babies might
have preferred without any arithmetical expectations at all. A display
of one doll was expecred in the subtraction experiment but not in the
addition experiment; so, if the babies did have arithmetical expecta-
tions, they should look longer at the same display after seeing the sub-
traction occur. This is just what happened. Similarly, a display of two
dolls would be expected in the addition experiment but not the sub-
traction, and again the babies looked longer at the same display when
it followed an arithmerical process that makes it unexpected.

This result has been replicated by Tony Simon at the Georgia
Institute of Technology and his co-workers Susan Hespos and Philippe
Rochat at Emory University.’* They introduced a new twist to the
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experiment. Will babies {this time from 3 to 5 months) actually give
more weight to arithmetical expectations than to other kinds of expec-
tations about objects? In their experiment, the babies saw two kinds
of doll—Flmo and Ernie, from the TV show ‘Sesame Street’, which
are different in shape and colour. This allowed the experimenters to
violate expectations about the identity of the object—Elmo surrepti-
tiously changing into Ernie—as well as arithmetical expectations. They
used ‘possible’ and ‘impossible’ trials in the addition experiment in
which the baby saw one object, then the screen came up and they saw
a hand put a second object behind the screen (Table 3.1).

The remarkable finding was that the babies responded very
strongly when the outcome was arithmetically impossible, but did not
seem to care at all when Elmos changed into Ernies. It is beyond all
question that babies of this age are well able to discriminate shapes
and colours and they do have expectations about objects appearing or
disappearing without obvious reason, and about at least some of their
physical properties. This seems to me good evidence not only that
babies are born with the capacity to form arithmetical expectations of
this simple sort, but that it is actually more important to them than
some other, more obvious types of expectation.

Babies, as we have seen, have a sense of numerosity and can carry
out a process of adding or subtracting one from small numerosities to
develop accurate arithmetical expectations. We do not know whether
babies’ arithmetical expectations are really general, as owrs are. For

Possible outcomes Impossible outcomes

Elmo + Elmeo = 2 Elmos Elmo + Elmo = Elmo
(impossible arithmetic)

Ernie + Ernie = 2 Ernies Elmo + Elmo = Eimo + Ernie
(impossible identity)

Fimo + Frnie = Eimo and Ernie  Elmo + Elmo = Ernie
{impossible arithmetic and identity)

Table 3.1 Outcomes of trials with Elmo and Emie.
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example, do they have a general expectation that whenever you take
an object from a collection you are left with one fewer? Do they even
have expectations that apply to all collections of a given numerosity,
that whenever you take 1 away from a collection of 2 you will be left
with 1? They probably have this latrer expectation, but we cannot be
sure. We cannot even be sure that they have in mind the numerosities
that they can distinguish in these experiments, in the sense that they
can think about them in the absence of a collection with that
numerosity, or whether indeed they can think about them at all.

We believe that if you take one thing away from a collection, then
the collection will be smaller, it will have fewer members. It is by no
means clear that babies understand this just because they notice a dif-
ference from their expectations when you take one doll away from
two dolls. Similarly, we believe that adding one increases the numeros-
ity of a collection, and again all we know about babies is that they
notice the difference from their expectations.

Where babies have arithmetical expectations, we as adults also have
arithmetical beliefs which we can formulate explicitly if we have to.
Now, babies may also have beliefs about adding and subtracting, but it
is very difficult for us to find out because the best evidence—explicit for-
mulation in words—depends on speech. Nevertheless, babies® behaviour
does appear to be constrained by the truths of arithmetic, even if they do
not actually believe that if two objects are presented and just one of
them is removed, then exactly one of them will be left. In this sense, they
do seem to possess a kind of innate arithmetic.*

The reason why learning to count is so important is that it helps
the baby build on these innate capacities so that it understands that
numerosities have a size sequence, so that it can bring to mind indi-
vidual numerosities, and so that it can have entirely explicit beliefs
about the relationship between numbers and the effects of operations
Ol nuUImerosities.

LEARNING TO COUNT-—SOME SIMPLE WAYS

Counting is basic. It makes the first bridge from the infant’s innate
capacity for numerosity to the more advanced mathematical achieve-
ments of the culture into which it was born. The least mathematical




BORN TO COUNT

of cultures enable their members to do much more than the infant
can. The members can keep track of quite large numerosities by
counting with special number words or body-part names; they can do
arithmetic beyond adding or subtracting one from small numerosities
which they will need for trading or for ritual exchanges.

As any adult knows, counting is one of the easiest things to do. So
why, if children are born to count, does it take so long for them to
learn to do it? They start around two years old, and may be more
than six years old before they have a good grasp of how to count and
how to use counting.

Counting, it turns out, is not as simple as it first seems. Let us
reflect for a moment on what practical skills we need to have mas-
tered to count a collection of five toy dinosaurs. First, we need to
know the number words from ‘one’ to ‘five’ (or, more generally, we
need to know five counting words that we always keep in the same
order). Second, we need to link each of these words with one and only
one object: no word must be used more than once and all objects
must be counted. That is, we must put each object in ore-to-one cor-
respondence with the counting words. Third, we must be in a position
to announce the number of toy dinosaurs by using the last counting
word used: ‘One, two, three, four, five. Five toy dinosaurs.’1$

Learning the sequence of counting words is the first way in which
children connect their innate concept of numerosity with the cultural
practices of the society into which they are born. As we saw in Chapter
2, not all societies use specialized words for counting. Many use the
names of body parts. But all use the words in a fixed, unalterable
sequence. You could count with the word sequence ‘one, seven, five’
so that each time 3 objects were counted, ‘five’ was announced. In
this case the word ‘five’ would just mean 3. Similarly, you could count
‘thumb, wrist, shoulder’ every time so that the word ‘shoulder’ meant
3. What you cannot do is change the order, for then ‘“five’ or ‘shoulder
would have different meanings each time they were used and no one
could understand how many had been counted.

Even learning the sequence of number words is not that straight-
forward. Children of two or three years often think of the first few
number words as just one big word—‘onetwothreefourfive’—and it
takes them some time to learn that this big word is really five small
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words.”” Of course, if there’s just one big word, they cannot put the
sequence into one-to-one correspondence with objects to be counted.
It also takes a while for children to get the word Sequence COTrect:

A child of 3% trying to count eight objects: ‘One, two, three, four,
eight, ten eleben. No, try dat again. One, two, three, four, five,
ten, eleben. No, try dat again. One! two! three-ee-four, five, ten,

eleben. No. ... [finally] . .. One, two, four, five, six seven, eleven!
Whew!’18

But knowing that there is a fixed sequence of separate words is not
sufficient for knowing that these words are used for counting, that
they have a role in finding the numerosity of a collection. As I pointed
out at length in Chapter 1, number words have many meanings, not
just a numerosity meaning. The child therefore has to separate count-
ing uses from other uses which may be much more frequent around
the house or school: telling the time, measuring, putting things in
order, classroom numbers, TV channel numbers, house numbers,
and so on. This suggests (though there is no direct-evidence) that the
acquisition of the word sequence and its use in counting will depend
heavily on how it is taught and on the contexts in which it is learned.!?

One-to-one correspondence appears ar about two years of age
quite independently of learning the sequence of counting words. At
two, children happily give one sweet to each person, put one cup with
each saucer, and can name each person in a room or a picture—or
point to them—once and only once: ‘Daddy, Mummy, Amy, Auntie
Carole, me!™® If you show a ‘puppet who is not very good at count-
ing’ counting the same object twice or missing an object altogether,
children of three-and-a-half are very good at spotting these violations
of one-to-one correspondence.?! And almost all children point to each
object when they count, even when they can use the number words
correctly, so there is one-to-one correspondence between objects,
points, and words.2?

Children of three-and-a-half are also proficient at giving the last
word in the count as the number of objects counted. Rochel Gelman, a
psychologist at the University of California at Los Angeles (UCLA),
whose work on children’s number abilities has been the most influen-
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tial since Plaget, calls this the cardinal word principle.?® She, and oth-
ers, have pointed out that merely doing this doesn’t mean that children
really know that the last number spoken is the numerosity of the set.
They could just be imitating an adult routine. We can ask children of
this age to count a collection of toy dinosaurs, and they can reply, cor-
rectly, ‘One, two, three, four.” If we then ask them, ‘How many toy
dinosaurs are there?’ they may well go back and count them again,
This may be because they don’t understand that the process of count-
ing will give them the numerosity of things counted. On the other
hand, given that they’ve just counted how many, they may think thar
the adult has detected an error and is asking them to do it again.

Some children of this age, though they may count in some circum-
stances, do not always see the point of it. If you ask them to give you
three toy dinosaurs, they may just grab a handful and give them to
you without counting. Karen Wynn?? calls them ‘grabbers’. Although
they do use the last word of a count to say how many, grabbers often
have not yet grasped the role of number words in counting—some-
times they think that the number word is just a label that attaches to
an object. Here is what Adam, a grabber, did in one of Wynn’s tasks:

EXPERIMENTER (E): So how many are there?
ApAM (A) (Counting three objects): One, two, five!
E (Pointing towards the three items): So there’s five here?

A: No, that’s five (pointing to the item he’d tagged “five’).

E: What if you counted this way, one, two, five? (Experimenter
counts the objects in a different order than Adam has been
doing.)

A: No, this is five (pointing to the one he has consistently tagged
‘five).

Other children, whom Wynn calls ‘counters’, usually a few months
older, will count, either aloud or silently, passing you the toys one by
one. They also reliably give you the last word of the count in answer
to ‘How many?’ These children are initially able to count only small
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. numerosities, and probably build up their competence systematically

from 1 to 2, from 2 to 3, from 3 to 4, and so on. In a give-a-number
task, they will start by being able reliably to give 1, then to give 2, but
perhaps not 3, ther 3 but perhaps not 4. So by three-and-a-half most
children have a grasp of small numerosities, and know thar counting
is a2 way to find the numerosity of a collection.

Children also need to understand that it doesn’t matter in which
order they count the objects in a collection, or indeed what those
objects are. Gelman calls these the ‘order-irrelevance principle’ and
the ‘abstractness principle’.2S It is, however, true that even when they
normally obey these principles, they are still better at counting solid
objects than actions or sounds, especially objects they can actually
move about,” and also do better when the objects are lined upin a
row and they start at one end rather than in the middle. It’s generally
believed that these differences in performance are due not to a weak-
ness in the basic ideas, but to other problems in carrying out the task,
including the effects of practice. For the same reason they are better at
counting with small numbers than large. They have much less practice
with large numbers: who would teach their child ‘one hund:ed and
seventy-three’ before they teach ‘three’?

Gelman’s three *how-to-count principles’—cardinal word, order-
irrelevance, and abstractness—along with a fourth principle for one-
to-one correspondence guide the acquisition of verbal counting skills.
It is clear that a grasp of the principles follows from understanding
the concept of numerosity. Collections are not intrinsically ordered.
Understanding this means that you understand the order-irrelevancy
principle. There is also no constraint on the kinds of things that can
be members of a collection, provided they can be individuated.
Understanding this implies holding the principle of abstractness. Of
course, children, and adults, may possess the concept of numerosity
without fully understanding and without having derived all the princi-
ples that validly follow from it.

The how-to-count principles for putting counting words to mem-
bers of a collection are complex, since counting means being able to
link each member of a collection, once and only once, to a fixed
sequence of words. In this way, the further you count in the sequence
the larger the numerosity you have counted. If you count from the
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word ‘one’ to the word ‘five’ in the usual English sequence, then the
members counted at the word ‘four’ are a sub-collection of the final
collection of five objects; similarly, the members counted ar ‘three’ are
a sub-collection of the collections of four and five.

Specifically, the cardinal word principle—the last number named
in a count is the numerosity of the collection counted—also follows
from the concept of numerosity, since you are establishing a correfa-
tion between members of a collection whose numerosity you do know,
the number words up to five, say, and members of the collection of
things to be counted, whose numerosity you do not know. It may fol-
low in a practical way as well. Recall that infants can recognize the
numerosities of objects up to about 3. In children and adults this abil-
ity to take in the numerosity of a visual array of objects at a glance,
and without counting, is known as subitizing.

Karen Fuson, from Northwestern University in Illinois, who carries
out her research in some of the toughest schools and homes in Chicago’s
notorious South Side, suggests that children may notice that when they
count a collection ‘one, two, three’, they get the same number as when
they subitize the collection. This helps them to see that counting up to N
is a way of establishing that a collection has N objects in it.?”

Repeating the count, and getting the same number as was obtained
from subitizing, will reinforce the idea that every number name repre-
sents a unique numerosity. Again, this is something obvious to us
adults, but it may not be obvious to children, especially as in practice
children will sometimes count the samie collection and get different
results. They will count (or miscount) ‘one, two, three dinosaurs’, and
may count again ‘one, two, four dinosaurs’, and then again ‘one two
three four dinosaurs’. They may wonder whether different number
words can name the same numerosity, the numerosity of the collection
of dinosaurs. Perhaps they will ask themselves: “Does counting always
give me the numerosity [ get from subitizing?’ (though they are
unlikely to frame the question in exactly those words).

One of the child’s real problems at around this age, about four years
old, is, in my view, the conflict that can occur between the numerosities
they achieve by counting and the numerosities provided by their innate
ability to subitize small collections of objects. Suppose that subitizing
yvields four objects but counting comes up with five; which are they to
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believe? Will they suspend judgement and recount? At the moment, little
is known abour the causes and consequences of this conflict,

The child will have still other ways of estimating the numerosity of a
collection. In general, they will have noticed that more things take up
more room than fewer things, so the size of the array will be a useful
clue. Packing density will also be a clue to numerosity. Piaget was among
the first to see that a full grasp of the concept of numerosity meant being
able to abstract away from—or ignore—these superficial clues, so that
you do not think, for example, that there are more things just because
they are more spread out (or more closely packed together). He saw the
development of the child’s thinking in general as a move away from the
particular to the general and abstract (indeed he thought that really
abstract formal reasoning doesn’t emerge until puberty—which may not
correspond to the intuitions of parents with teenage children?®),

Children also use one-to-one correspondence to establish which of
two sets has more things in it. Even children as young as four can give
two people the same number of sweets by using a ‘one for Bill, one for
Mary’ strategy. In one experiment, the experimenter counted out Bill’s
share, and then asked the children who had successfully shared out the
sweets how many sweets Mary had, but less than half of them sponta-
neously made the inference that Mary had the same number as Bill,
Most tried to count out Mary’s share. So the match between these two
ways of determining RUMErosity—one-to-one correspondence and
counting—is by no means clear to children at this stage.?®

The conflict between the innate Systems and counting becomes
most surprising when children actually change their mind about the
numerical relationship between the collections. Piaget observed that
moving objects around, without adding or subtracting an object, will
make children as old as five or six think thar the numerosity has
changed. He would lay out two lines of coins, one above the other, so
that each coin in one line was clearly paired with a coin in the other.
The children under these conditions had no trouble saying whether or
not the two lines had the same number of coins. Then, in full view of
the children, Piager spread out the coins in one line so that the line
was longer than the other line. It was clear that he had added none
and taken none away. He asked the children which line had more
coins, and they said the longer line.
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The conflict between the different sources of evidence—different
‘cues’—for the numerosities can be seen very clearly in the way
children between four and six try to establish whether two sets have
the same number. What seems to happen is that during this period,
they come to suppress perceptual cues such as the spacing of objects,
and to depend exclusively on genuine numerosity information, such
as correspondence and counting. They cease to be fooled by changing
the spacing of objects. In Piagetian terms, number is ‘conserved’
under perceptual transformations. There are three stages in the child’s
progress to conservation.

Piagetian Stages in Achieving ‘Conservation of Number’s

(The basic situation: six little bottles, about one inch high, the kind
used in dolls’ games, are put on the table, and the child is shown a set
of glasses on a tray.) Look at these little bottles. What shall we need if
we want to drink? Glasses. Well, there they are. Take off the tray just
enough glasses, the same number as there are bottles, one for each
bottle. (Child’s responses in italics.)

Stage I: No correspondence or equivalence. Here the child seems
to rely solely on perceptual cues like spacing, and doesn’t count or use
one-to-one correspondence.,

Car (5 years 2 months) arranged them so that each bottle had its
glass. (He had taken all the glasses, so he removed some and left 5.
He tried to make these correspond to the 6 bottles by spacing them
out so as to make a row the same length.) Is there the same number
of glasses and bottles? Yes. Exactly? Yes. {The bottles were then moved
closer together so that the two rows were no longer the same length.)
Are they the same? No. Why? There aren’t many bottles. Are there
more glasses or more bottles? More glasses (pushing them a little closer
together). Is that the same number of glasses and bottles now? Yes.
Why did you do that? Because that makes them less.

Stage I: Children can do one-to-one correspondence, but still
rely more on perceptual cues. In Piaget’s terms, they haven’t yet
achieved ‘conservation of number’ under perceptual transformations.

Mog {4; 4) estimated that he needed 9 glasses for the 6 bottles, then
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made one-one correspondence and removed the 3 that were left over,
and said spontaneously: No, it wasn’t the right number. And are they
the same now? Yes, {The glasses were put closer together and the bot-
tles spread our a little.) Is there the same number of glasses and bot-
tles? No. Where are there more? There are more bottles,

Children can be quite explicit about the evidence they are relying
on to make a judgement. Counting can override perceptual cues at
this stage.

Gal (5;1) made 6 glasses correspond 1o 6 bottles. The glasses
were then grouped together. Js there the same number of glasses and
bottles? No, it’s bigger there (the bottles) and smaller here (the
glasses). (The bottles were- then grouped together and the glasses
spread out.} Now there are more glasses. Why? Because the bottles
are close together and the glasses are all spread ous. Count the glasses.
1,2, ... 6. Count the bottles. 1, 2, . . . 6. They’re the same then? Yes,
What made you say they weren’t the same? It was because the bottles
are very small,

Stage III: Children have achieved conservation of number. They
now rely on one-to-one correspondence or counting and are not
deceived by changing the preceptual cues,

Lau (6;2) made 6 glasses correspond to & bottles. The glasses
were then grouped together. Are they still the same? Yes, it’s the same
number of glasses. You'ye only put them close together, but it’s stil]
the same number. And now, are there more bottles (grouped) or
glasses (spaced out)? They're still the same. Youve only pur the bog-
tles close together.

Piaget believed that counting, and learning number words to do it,
Was not important, and certainly not necessary, for constructing the
concept of numerosity, which he thought was built up from logical
concepts and reasoning, around the ages of four to six, until posses-
sion of the concept was demonstrated by conservation of number
under transformations. Following Piaget, the French virtually out-
lawed teaching counting in nursery schools: clearly there would be ng
point if the child has first to develop the Piagetian prerequisites of
transitive inference, class inclusion, and so on.31
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CoOUNTING LARGER NUMBERS:
WHY IT°s EASIER v CHINESE

The conceptual tools provided by the culture are not all the same, even
for something as basic as counting. In Chapter 2 we saw that there
were lots of different counting systems, some using body-part names;
some with bases of 20 or 60; others, like Ainu, which used overcount-
ing and subtraction; others, like ours, that used only addition; some
with big numbers always first, like our numeral system; others with the
smaller number first, as in German ein-und-zwanzig (‘one-and-
twenty’). The child will have different problems to solve in trying to
master these local counting systems. Do some of them make life harder
for the child, or are they all really much the same? Unfortunately,
research in this area is just beginning, but there is one feature of count-
ing systems that we now know makes life harder: irregularity.

The innate structure of our representations of numerosity is not in
base-10 form. It may work only for numbers less than 10: the evi-
dence from infants has shown abilities only up to about 4. Even if
nature has endowed us with a way of constructing mental representa-
tions of nuenbers as large as we choose, there is no reason to suppose
that it will be in base 10. However, English-speaking children need to
learn the local cultural practice of counting in tens. In fact, they have
to learn two quite different principles of counting in tens. The first
learned is the verbal system, which is not a place-value system bur an
enciphered or ‘name-value’ system. We have special names for (some
but not all of) the powers of ten: ‘ten’, ‘hundred’, ‘thousand’, ‘mil-
lion’. We say ‘two hundred and twelve’, not ‘two one two’ (which is
how the poet-astronomers of the fifth-century Indus Valley civiliza-
tion did it, as we saw in Chapter 2). We also have to learn the
numeral system, which is indeed place-value. And we have to learn
how to ‘transcode’, to use the technical term, from one to the other.
The most basic thing that children have to learn is that larger num-
bers are composed of smaller numbers, that both systems use ‘addi-
tive composition’. That is, they have to learn that twelve and 12 both
mean ten plus two.

Now, different languages can make the additive composition of
the number-word system clear or obscure. In English, we count from

2]
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1 to 9, with each number represented by a single word. Ter is a word,
sO are eleven, twelve, and so on up to fwenty. In Chinese, each num-
ber up to 10 is also represented by a single word, but thereafter things
are regular (Table 3.2). For Chinese children there is no trouble with
the teens, as they do not have to learn special words for them. But
how is the English-speaking child to know that eleven is really ten
plus one, or fwelve ten plus two? They sound like single words, and
are written as single words. Some children pick up on the fact that
there is a new, teen, series after ten. This can lead to mistakes such as
over-regularizing from the later teens to the earlier. Some children
briefly count len, eleventeen, twelveteen. The first decade is irregular
not only in being single words—other decades are two words—and

but those that have the word teen in them have teen in the wrong
place—after the unit number (‘thirteen’ is a 3, 10), rather than before
for all other decades in English ( ‘twenty-three’ is 20, 3).

Our children have to learn that -ty is the bit of the word that
stands for 10, and thar twen-, thir-, and fif- (none of which are words
in English) mean two, three, and five (or twice, thrice, and five times).
Chinese children, on the other hand, need to learn no new words or
new bits of words for the decades: the number of tens is explicit—itwo

unit number always comes straight after the ten, unlike in French,
where decades plus one are different from decades plus a higher num-
ber—uvingt-et-un, but vingt-deux. Does this simplicity really give Chi-
nese children an advantage in learning their numbers? Do they learn
the principle of additive composition more easily?

Chinese-speaking Taiwanese children of 4, 5, and ¢ years old
turn out to be spectacularly better ar counting than their US coun-
terparts. The US children were far worse when they got to the teens,
while the Taiwanese children scarcely made any mistakes, 32 What is
more, Taiwanese children understand how tens and units are added
together in the base-10 system that is common to Chinese and Eng-
lish; in fact they seem to understand how to add numbers together
to make a target number far betrer than US childreq do. This was
shown recently by a study by Peter Bryant with six-year-olds. He
used a simulated shop where things cost 6p or 11p, and children
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10
11
12
13
14
15
16
17
18
19

i

er

san

s5i

twu

lin

qi

ba

Jiu

shi

shi yi
shi er
shi san
shi si
shi wm
shi b
shi gi
shi ba

shi jin

100

er shi

er shiyi
er shi er
er shi san
er shi si
er shi wu
er shi lin
er shi gi
er shi ba
er shi jiu

san shi

¥i bai

er bai

er bai san shi yi

Table 3.2 Chinese number words.

had 1p, 5p, and 10p coins {or their Chinese equivalents). Both
groups were equally good at counting out the 1 units, but the Chi-
nese children were much better at paying with 10 + 1 rather than
eleven 1’s, which is what one would expect if the transparency of
the Chinese verbal system makes additive composition so much eas-
ier to understand. What is more, they seemed to understand the
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principle better, since they transferred this to paying 5 + 1 for the 6-
unit purchase,33

Even when children understand that their language uses a base-10
representation, there is stil] the conflict between the way the base is
encoded in the name-vajue system of the words and in the place-value

An explanation for this Was proposed by Richard Power and Maria

three-digit numbers Jike due cento venti sette and #re cento cinge.,

direct application here. One they called ‘concatenation®, For two-digit
numbers, the child need only take the ‘major term’, the multiple of the
tens (2), and the “minor term’, the multiple of the units {7), and con-
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dal Martello called ‘overwriting from the right’. For two bundred and
seven the rightmost 0 must be overwritten by the 7; for fwo bundred
and twenty seven the two rightmost 0’s must be overwritten by the 27.
This is a more complicated rule than concatenation, and since children
learn three-digit numbers after they have learned two-digit numbers, it
will be acquired later. So there will be a stage when they have the eas-
ier concatenation rule but are still working on the overwriting rule.

In learning about numbers larger than those readily grasped by
the innate Number Module, the child has to confront the conflict
between two conflicting representational principles: name value in
words and place value in numerals. This makes learning difficult,
especially, as we have seen, where the name-value system is irregular,
as it is in English and other Furopean languages.

In Figure 3.2 I summarize how children add to their conceptual
toolkit, by using body parts such as fingers, number words, and
numerals. One of the problems they face is how to coordinate these
different systems.

CULTURE
CONCEPTUAL TODLS

h 4

FINGER-COUNTING &
FINGER
ARITHMETIC

NUMBER
MODULE
[

COUNTING
WORDS

SUBMZING

Figure 3.2 The child at about four years uses subitizing to support learning what the
number werds mean and how many fingers are held up. Numerals are learned primar-
ily in connection with the number words.
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ARE THERE SEX DIFFERENCES
IN NUMBER ABILITIES?

Is there something about the female brain that makes it, on average,
worse at mathematics than the male brain? This Is an important ques-
tion for our enquiry because if numerical capacity is sex-linked then
this is positive evidence for it being coded in the genes. The develop-
ment of primary sexual characteristics is of course sex-linked and
coded in the genes; so is average brain size: human females everywhere
have brains 20% smaller than males—1,200 cm? versus 1,500 cms3.

However, it has been very difficult to show that differences in
brain size have any cognitive consequences at all, There is no differ-
ence in average IQ. In academic achievernent, boys have in the past
outperformed girls by the age of eighteen. However, girls in England
now outperform boys in all subjects at all ages. There is one exception
to this general rule: mathematics. Girls are still doing worse at mathe-
matics than boys (but read on).

This has been an official worry since Dr Cockeroft and his Com-
mittee of Inquiry into the Teaching of Mathematics produced his
report for the British government. But that was in 1982. Before then,
few seemed to care, and many thought it almost improper for girls to
be good at maths. In a relatively enlightened Handbook for Teachers,
issued in 1937, the British government advised:

In mental capacity and intellecrual interests [boys and girls] have "
much in common, the range of difference in either sex being
greater than the difference between the sexes. But in early adoles-
cence the thoughts of boys and girls are turning so strongly
towards their future roles as men and women that it would be
entirely inappropriate to base their education solely on their intel-
lectual similarity.36

A father, withdrawing his daughters from Cheltenham Ladies® College
when it introduced ‘arithmetic’ into the curriculum, wrote to Dorothea
Beale, the headmistress, ‘My dear lady, if my daunghters were going to
be bankers, it would be very well to teach arithmetic as you do, but
really there is no need.” From the middle of the nineteenth century,
when female education became an issue, until the Cockeroft report, the
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curriculum was designed to reflect its usefulness to boys and girls in
their adult lives. Differences in mathematical performance were gener-
ally attributed to lack of interest on the part of girls, who would be
mainly concerned with their furure roles as wives and mothers. In 1923,
the Board of Education attributed ‘girls’ inferiority’ in mathematics
partly to ‘an impression among parents, which has influence on the
timetable, that mathematics is unsuitable for girls’. Maths was fre-
quently sacrificed to needlework. The Board even suggested that girls’
poor performance could be due ‘partly to unskilful teaching of an old-
fashioned kind’.3” This is scarcely surprising since very few females
wishing to teach maths had had the opportunity to go to university,
and fewer still to follow a graduate course in mathematics.

In many countries before the Second World War, including
Britain and in many ways the more educationally progressive Austria
and Germany, women were strongly discouraged or even prevented
from doing mathematics at university. Margaret Wertheim, in her
fascinating history of female exclusion from the ‘priesthood’ of math-
ematical physics, notes that in the oldest of all mathematical priest-
hoods, Pythagoras’ community in Croton {southern Italy), women
were full members, mathematikoi. There were even women teachers
of mathematics, including Theano, Pythagoras’ wife. This was not to
last. In the ancient world there was a fundamental division berween
the male realm and the female realm, the Sky Father and the Earth
Mother. For the later Pythagoreans this became a division between
the realm of the psyche, which was male, and the realm of the body,
which was female. Numbers were in the realm of the psyche, and so
naturally a male pursuit, and women came to be excluded from its
study. With very few exceptions, women were excluded from mathe-
matics until very recently indeed.

Emmy Noether was one of the team that David Hilbert, perhaps
the greatest mathematician of his time, assembled in Gottingen to
help Einstein find the right mathematics for the relativistic theory of
gravity. She made fundamental contributions to algebra, and to the
search for a unified theory of general relativity and quantum mechan-
ics. Yet her life illustrates what obstacles even the most talented of
mathematicians had to overcome if they were women.

Despite being the daughter of a professor of mathematics, she was
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denied €Diry to university, and spent three years ar teacher training
college. She then was allowed to attend classes in mathematics ar
Erlangen, her father’s university, but only as an ‘audjtop, It was not
until five years later that she wag allowed formally to enro]. Her doctora]
thesis was described ag ‘an aWe-Inspiring piece of work’ by Hermann
Weyl, one of the most celebrated mathematicians of hig day. However,
as Wertheim purs it, Tt was one thing for a woman o be educated in
Germany; it was another matter for her 1o be employed’. ¥ For the whole
of her working life in Europe she never received a proper salary, even
when she was finally offered an official position ar Géttingen.

In the first half of this century, most girls in Europe and the USA
harbouring the hope of £0ing on to UNIVersity were attending single-
sex schools where they were taught by female teachers. With these
obstacles to getting a degree in mathematics, there were very few
properly qualified teachers of mathematics. There is no doubr that
this put girls at 4 disadvantage. Today, when Presumably girls and
boys have more or less equivalens teaching, have the girls caught up;

In a provocative review, David Geary, 2 psychologist from the

(Scholastic Aptitude Test«Mathematics), a requirement for unjver.
sity admission. The difference between boys and girls gets larger
higher up the range,

and woman 3 gatherer, These Visuo-spatia] skills, tempered in habitar
Ravigation, will he evident in geometry, but also ip solving non-

between boys and girls is still only 1%, The MOst recent cross-national
comparisons using the same tests in all countries, the Third Interna-
tional Maths and Science Survey (TIMSS),%0 reinforces the overall pic-
ture that in megt countries, including the USA, boys do not
outperform girls at aff (Table 3.3). However, there are still a few coun-
tries in which boys significantly outperform girls, megt dramaticaﬂy in

M
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Age nine to ten Age fourteen
Country Mean Difference  Country Mean Difference
(points)  in favour (points)  in favour
of boys of boys
Singapore 625 -10 Singapore 601 0
Scotland 520 0 Hungary 502 1
USA 544 2 Canada 494 2
Canada 533 3 Germany 435 2
Hungary 549 5 Scotland 464 3
Engtand 513 N USA 476 5
Norway 502 5 Sweden 478 5
Jepan 693 g+ France 453 3
Netherlands 577 15* Japan 571 11#
Switzerland 506 14
England 476 .17

*Statistically significant difference.

Table 3.3 International comparisons of sex differences at two ages in points, 4!

England. Interestingly, the gap between boys and girls gets bigger with
age, indicative of the critical influence of educational practices. What is
certainly clear from the TIMSS darta is that the differences between
countries, between educational practices, has a vastly greater effect on
performance than the difference between the sexes.

TIMSS provides a snapshot of the situation three years ago, but in
the most recent public examination figures in England, January 1997
at the time of writing, at the age of sixteen girls are outperforming
boys in every subject, including mathematics. In some educational
authorities girls are, overall, outperforming boys by nearly 50% .4
So the urgent question is no longer why girls are performing less well
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than boys, but why teenage boys are doing so badly! No one has yet
suggested that boys are inherently less intelligent than girls, nor that
they might be better fitted to manual work than to brain work.

Geary refers to NUMerosity recognition and ordering, counting,
and simple arithmetic as ‘biologically primary abilities’.** These are
precisely the abilities that seem to be functioning in infants, and, as
we shall see in the next section, in our primate ancestors. Now, if
there is to be a biological difference berween males and femaies, here
is where we should find it, since more advanced numerical skills will
be deeply affected by educational opportunities. However, Geary
admits he was unable to discover any evidence at all for sex differ-
ences in these biologically primary abilities.

The fact that there are no sex differences in these basic abilities,
and probably no biologically based sex differences in higher abilities,
does not mean that the basic abilities are not coded in our genes. It
tells us only that they may not be sex-linked properties of the genome.
So we shall have to look elsewhere for the genes,




