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CHAPTER 1
EXPLAINING THE ORIGINS

[Lthnological and Psychological Approaches
to the Sources of Numbers

WHEN THE SLATE WAS CLEAN

There must have been a time when nobedy knew how to count. All we can
surmise is that the concept of number must then have been indissociable
from actual objects — nothing very much more than a direct apperception
of the plurality of things. In this picture of early humanity, no one would
have been able to conceive of a number as such, that is to say as an abstrac-
tion, nor to grasp the fact that sets such as “day-and-night”, a brace of hares,
the wings of a bird, or the eyes, ears, arms and legs of a human being had
a common property, that of “being two”.

Mathermatics has made such rapid and spectacular progress in what are
still relatively recent periods that we may find it hard to credit the existence
of a time without number. However, research into behaviour in early
infancy and ethnographic studies of contemporary so-called primitive
populations support such a hypothesis.

CAN ANIMALS COUNT?

Some animal species possess some kind of notion of number. At a rudi-
mentary level, they can distinguish concrete quantities (an ability that must
be differentiated from the ability to count numbers in abstract). For want
of a better term we will call animals’ basic number-recognition the sense
of number. It is a sense which human infants do not possess at birth.
Humans do not constitute the only species endowed with intelligence:
the higher animals also have considerable probiem-solving abilities. For
example, hungry foxes have been seen to “play dead” so as to attract the
crows they intend to eat. In Kenya, lions that previously hunted alone
learned to hunt in a pack so as to chase prey towards a prepared ambush.
Monkeys and other primates, of course, are not only able to make tools but
also to learn how to manipulate non-verbal symbols. A much-quoted
example of the first ability is that of the monkey who constructed a long
bamboo tube so as to pick bananas that were out of reach. Chimpanzees
have been taught to use tokens of different shapes to obtain bananas,
grapes, water, and so on, and some even ended up hoarding the tokens
against future needs. However, we must be careful not to be taken in by the

CAN ANIMALS COUNT?

kind of “animal inteHligence” that you can see at the circus and the
fairground. Dogs that can “count” are examples of effective training or
(more likely) of clever trickery, not of the intellectval properties of canine
minds. However, there are some very interesting cases of number-sense in
the animal world.

Domesticated animals (for instance, dogs, cats, monkeys, elephants)
notice straight away if one item is missing from a small set of familiar
objects. In some species, mothers show by their behaviour that they know
if they are missing one or more than one of their litter. A sense of number
is marginally present in such reactions. The animal possesses a natural
disposition to recognise that a small set seen for a second i1
undergone a numerical change.

Some birds have shown that they can be trained to recognis
precise quantities. Goldfinches, when trained to choose between tw«
ent piles of seed, usually manage to distinguish successfully betwee
and one, three and two, four and two, four and three, and six an

Even more striking is the untutored ability of nightingales, magy
crows to distinguish between concrete sets ranging from one to t
four. The story goes that a squire wanted to destroy a crow that ha
its nest in his castle’s watchtower. Each time he got near the nest, ¢
flew off and waited on a nearby branch for the squire to give up
down. One day the squire thought of a trick. He got two of his me
into the tower. After a few minutes, one went down, but the othe:
behind. But the crow wasn’t fooled, and waited for the second mz
down too before coming back to his nest. Then they tried the tri
three men in the tower, two of them going down: but the third ma
wait as long as he liked, the crow knew that he was there. Thepl |
worked when five or six men went up, showing that the crow could not
discriminate between numbers greater than three or four.

These instances show that some animals have a potential which is
more fully developed in humans. What we see in domesticated animals
is a rudimentary perception of equivalence and non-equivalence between
sets, but only in respect of numerically small sets. In goldfinches, there is
something more than just a perception of equivalence — there seems to be
a sense of “more than” and “less than”. Once trained, these birds seem to
have a perception of intensity, halfway between a perception of quantity
(which requires an ability to numerate beyond a certain point) and
a perception of quality. However, it only works for goldfinches when the
“moreness” or “lessness” is quite large; the bird will almost always confuse
five and four, seven and five, eight and six, ten and six. In other words,
goldfinches can recognise differences of intensity if they are large enough,
but not otherwise.
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Crows have rather greater abilities: they can recognise equivalence and
non-equivalence, they have considerable powers of memory, and they can
perceive the relative magnitudes of two sets of the same kind separated in
time and space. Obviously, crows do not count in the sense that we do,
since in the absence of any generalising or abstracting capacity they cannot
congeive of any “absolute quantity”. But they do manage to distinguish
concrete quantities. They do therefore seem to have a basic number-sense.

NUMBERS AND SMALL CHILDREN

Human infants have few innate abilities, but they do possess something
that animals never have: a potential to assimilate and to recreate stage by
stage the conquests of civilisation. This inherited potential is only brought
out by the training and education that the child receives from the adults
and other children in his or her environment. In the absence of permanent
contact with a social milieu, this human potential remains undeveloped —
as is shown by the numerous cases of enfanis sauvages. (These are children
brought up by or with animals in the wild, as in Frangois Truffaut’s film, The
Wild Child. Of those recaptured, none ever learned to speak and most died
in adolescence.) ‘

We should not imagine a child as a miniature adult, lacking only jﬁdge-
ment and knowledge. On the contrary, as child psychology has shown,
children live in their own worlds, with distinct mentalities obeying their
own specific faws. Adults cannot actually enter this world, cannot go back
to their own beginnings. Our own childhood memories are illusions, recon-
structions of the past based on adult ways of thinking,

But infancy is nonetheless the necessary prerequisite for the eventual
transformation of the child into an adult. It is a long-drawn-out phase of
preparation, in which the various stages in the development of human
intelligence are re-enacted and reconstitute the successive steps through
which cur ancestors must have gone since the dawn of time.

According to N. Sillamy (1967), three main periods are distinguished:
infancy (up to three years of age), middle childhood (from thzee to six or
seven); and lafe childhood, which ends at puberty. However, a child’s intel-
lectual and emotional growth does not follow a steady and linear pattern.
Piaget (1936} distinguishes five well-defined phases:

1. a sensory-motor period (up to two years of age) during which the
child forms concepts of “object” out of fragmentary perceptions
and the concept of “self” as distinct from others;

2. a pre-operative stage (from two to four years of age), charac-
terised by egocentric and anthropomorphic ways of thinking
(“look, mummy, the moon is following me!”);

3. an intuitive period {from four to six), characterised by intellec-
tual perceptions unaccompanied by reasoning; the child performs
acts which he or she would be incapable of deducing, for example,
pouring a liquid from one container into another of a different
shape, whilst believing that the volume also changes;

4. a stage of concrete operations (from eight to twelve) in which,
cespite acquiring some operational concepts (such as class, series,
number, causality), the child’s thought-processes remain firmly
bound to the concrete;

5. a period (around puberty) characterised by the emergence of
Jformal operations, when the child becomes able to make hypothe-
ses and test them, and to operate with abstract concepts.

Even more precisely: the new-born infant in the cradle perceives the
world solely as variations of light and sound. Senses of touch, hearing and
sight slowly grow more acute. From six to twelve months, the infant
acquires some overall grasp of the space occupied by the things and people
in its immediate environment. Little by little the child begins to make
associations and to perceive differences and similarities. In this way the
child forms representations of relatively simple groupings of beings and
objects which are familiar both by nature and in number. At this age,
therefore, the child is able to reassemble into one group a set of objects
which have previously been moved apart. If one thing is missing from a
familiar set of objects, the child immediately notices. But the abstraction
of number — which the child simply feels, as if it were a feature of the
objects themselves — is beyond the child’s grasp. At this age babies do not
use their fingers to indicate a number.

Between twelve and eighteen months, the infant progressively learns to
distinguish between one, two and several objects, and to tell at a glance the
relative sizes of two small collections of things. However, the infant’s
numerical capabilities still remain kmited, to the extent that no clear
distinction is made between the numbers and the collections that they
represent. In other words, until the child has grasped the generic principle
of the natural numbers (2=1+1;3 =2 +1; 4 =3 +1, etc.), numbers remain
nothing more than “number-groupings”, not separable from the concrete
nature of the items present, and they can only be recognised by the
principle of pairing (for instance, on seeing two sets of objects lined up next
to each other).

Oddly enough, when a child has acquired the use of speech and learned
to name the first few numbers, he or she often has great difficulty in
symbolising the number three. Children often count from one to two and
then miss three, jumping straight to four. Although the child can recognise,
visually and intuitively, the concrete quantities from one to four, at this
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stage of development he or she is still at the very doorstep of abstract
numbering, which corresponds to one, twa, many.

However, once this stage is passed (at between three and four years of
age, according to Piaget), the child quickly becomes able to count properly.
From then on, progress is made by virtue of the fact that the abstract
concept of number progressively takes over from the purely perceptual
aspect of a collection of objects. The road lies open which leads on to the
acquisition of a true grasp of abstract calculation. For this reason, teachers
call this phase the “pre-arithmetical stage” of intellectual development.
The child will first learn to count up to ten, relying heavily on the use of
fingers; then the number series is progressively extended as the capacity for
abstraction increases.

ARITHMETIC AND THE BODY

The importance of the hand, and more generally of the body in children’s

‘acquisition of arithmetic can hardly be exaggerated. Inadequate access to

or use of this “counting instrument” can cause serious learning difficulties.
In earliest infancy, the child plays with his or her fingers. It constitutes
the first notion of the child’s own body. Then the child touches every-
thing in order to make acquaintance with the world, and this also is
done primarily with the hands. One day, a well-intentioned teacher
who wanted arithmetic to be “mental”, forbade finger-counting in his
class. Without realising it, the teacher had denied the children the use
of their bodies, and forbidden the association of mathematics with
their bodies. I've seen many children profoundly relieved to be able to
use their hands again: their bodies were at last accepted [ . . . ] Spatio-
terporal disabilities can likewise make learning mathematics very
difficult. Inadequate grasp of the notions of “higher than” and “lower
than” affect the concepts of number, and all operations and relations
between them. The unit digits are written to the right, and the
hundred digits are written to the left, so a child who cannot tell left
from right cannot write numbers properly or biegin an operation at all
easily. Number skills and the whole set of logical operations of arith-
metic can thus be seriously undermined by failure to accept the body.
[L. Weyl-Kailey (1985)]

NUMBERS AND THE PRIMITIVE MIND

A good number of so-called primitive people in the world today seem
similarly unable to grasp number as an abstract concept. Amongst these
populations, number is “felt” and “registered”, but it is perceived as

WUMBERS AND THE PRIMITIVE MIND

a quality, rather as we perceive smell, colour, noise, or the presence of a
person or thing outside of ourselves. In other words, “primitive” peoples
are affected only by changes in their visual field, in a direct subject-object
relationship. Their grasp of number is thus limited to what their predispeo-
sitions allow them to see in a single visual glance.
However, that does not mean that they have no perception of quantity. It
is just that the plurality of beings and things is measured by them not in a
quantitative but in a qualitative way, without differentiating individual
items. Cardinal reckoning of this sort is never fixed in the abstract, but
always related to concrefe sets, varying naturally according to the type of
set considered.
A well-defined and appropriately limited set of things or beings,
provided it is of interest to the primitive observer, will be memorised
with all its characteristics. In the primitive’s mental representation
of it, the exact number of the things or beings involved is implicit:
it resembles a quality by which this set is different from another group
consisting of one or several more or fewer members. Consequently,
when he sets eyes on the set for a second time, the primitive knows
if it is complete or if it is larger or smaller than it was previously.
fL. Lévy-Bruhl (1928})]

ONE, TWO ... MANY

In the first years of the twentieth century, there were several “primitive”
peoples still at this basic stage of numbering: Bushmen (South Africa),
Zulus (South and Central Affica), Pygiies {Central Africa), Botocudos
(Brazil), Fuegians (South America), the Kamilarai and Aranda peoples in
Australia, the natives of the Murray Islands, off Cape York (Australia), the
Vedda (Sri Lanka), and many other “traditional” communities.

According to E. B. Tylor (1871), the Botocudos had only two real terms
for numbers: one for “one”, and the other for “a pair”. With these lexical
items they could manage to express three and four by saying something
like “one and two” and “two and two”. But these people had as much
difficulty conceptualising a number above four as it is for us to imagine
quantities of a trillion billions. For larger numbers, some of the Botocudos
just pointed to their hair, as if to say “there are as many as there are hairs
on my head”.

A. Sommerfelt (1938) similarly reports that the Aranda had only two
nwmber-terms, rinta (one), and tara (two). Three and four were expressed
as tara-mi-ninta (one and two) and fara-ma-tara ("two and two”), and the
number series of the Aranda stopped there. For larger quantities, imprecise
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terms resembling “a lot”, “several” and so on were used.
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Likewise G. Hunt (1899) records the Murray islanders’ use of the terms
netat and nefs for “one” and “two”, and the expressions neis-nefat (two +
one) for “three”, and neis-nels (two + two) for “four”. Higher numbers were
expressed by words like “a crowd of . . .”

Our final example is that of the Torres Straits islanders for whom wrapun
meant “one”, okosa “two”, skosa-urapun (two-one) “three”, and okosa-okosa
(two-two) “four”. According to A. C. Haddon (1890) these were the only
terms used for absolute quantities; other numbers were expressed by the
word ras, meaning “a lot”.

Attempts fo teach such communities to count and to do arithmeticin the
Western manner have frequently failed. There are numerous accounts of
natives’ lack of memory, concentration and seriousness when confronted
with numbers and sums [see, for example, M. Dobrizhoffer (1902)]. It
generally turned out much easier to teach primitive peoples the arts of
music, painting, and sculpture than to get them to accept the interest and
importance of arithinetic. This was perhaps not just because primitive
peoples felt no need of counting, but also because numbers are amongst the
most abstract concepts that humanity has yet devised. Children take longer
to learn to de sums than to speak or to write. In the history of humanity,
too, numbers have proved to be the hardest of these three skills.

PARITY BEFORE NUMBER

These primitive peoples nonetheless possessed a fundamental arithmetical
rule which if systematically applied would have allowed them to manipu-
late numbers far in excess of four. The rule is what we call the principle
of base 2 (or binary principle). In this kind of numbering, five is “two-
two-one”, six is “two-two-two”, seven is “two-two-two-one”, and so on.
But primitive societies did not develop binary numbering because, as
L. Gerschel (1960) reminds us, they possessed only the most basic degree
of numeracy, that which distinguishes between the singular and the dual.

A. C. Haddon (1890), observing the westeen Torres Straits islanders,
noted that they had a pronounced tendency to count things in groups of
two or in couples. M. Codrington, in Melanesian Languages, noticed the
same thing in many Oceanic populations: “The natives of Duke of York's
Island count in couples, and give the pairings different names depending
how many of them there are; whereas in Polynesia, numbers are used
although it is understood that they refer to so many pairs of things, not
to so many things.” Curr, as quoted by T. Dantzig (1930}, confirms that
Australian aborigines also counted in this way, to the extent that “if two
pins are removed from a set of seven the aborigines rarely notice it, but they
see straight away if enly one is removed”.

These primitive peoples obviously had 2 stronger sense of parity than of
number., To express the numbers three and four, numbers they did not
grasp as abstracts but which common sense allowed them to see in a single
glance, they had recourse only to concepts of one and pair. And so for them
groups like “two-one” or “two-two” were themselves pairs, not (as for us)
the abstract integers (or “whole numbers”) “three” and “four”. So it is easy
to see why they never developed the binary system to get as far as five and
six, since these would have required three digits, one more than the pair
which was their concept of the highest abstract number.

THE LIMITS OF PERCEPTION

The limited arithmetic of “primitive” societies does not mean that their
members were unintelligent, nor that their innate abilities were or are
lesser than ours. It would be a grave error to think that we could do better
than a Torres Straits islander at recognising number if all we had to use
were our natural faculties of perception.

In practice, when we want to distinguish & quantity we have recourse to
our memories and/or to acquired techniques such as comparison, splitting,
mental grouping, or, best of all, actual counting. For that reason it is rather
difficult to get te our natural sense of number. There is an exercise that we
can try, all the same. Looking at Fig. 1.1, which contains sets of objects in
line, try to estimate the quantity of each set of objects in a single visual
glance (that is to say, withou! counting). What is the best that we can do?
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Everyone can see the sets of one, of two, and of three objects in the
figure, and most people can see the set of four. But that’s about the limit of
our natural ability to numerate. Beyond four, quantities are vague, and our
eyes alone cannot tell us how many things there are. Are there fifteen or
twenty plates in that pile? Thirteen or fourteen cars parked along the
street? Eleven or twelve bushes in that garden, ten or fifteen steps on this
staircase, nine, eight or six windows in the fagade of that house? The correct
answers cannot be just seen. We have to count fo find out!

The eye is simply not a sufficiently precise measuring tool: its natural
number-ability virtually never exceeds four.

There are many traces of the “limit of four” in different languages and
cultures. There are several Oceanic languages, for example, which distin-
guish between nouns in the singular, the dual, the triple, the quadruple,
and the plural (as if in English we were to say one bird, two birdo, three bird,
four birdu, many birds).

In Latin, the names of the first four numbers (unus, duos, tres, guattor)
decline at least in part like other nouns and adjectives, but from five
(quinque), Latin numerical terms are invariable. Similarly, Romans gave
“ordinary” names to the first four of their sons (names like Marcus, Servius,
Appius, etc), but the fifth and subsequent sons were named only by
a numteral: Quintus (the fifsh), Sixtus (the sixth), Septimus (the seventh),
and so on. In the original Roman calendar (the so-called “calendar of
Romulus™), only the first four months had names (Martius, Aprilis, Maius,
Junius), the fifth to tenth being referred to by their order-number: Quintilis,
Sextilis, September, October, November, December.*

Perhaps the most obvious confirmation of the basic psychological rule
of the “limit of four” can be found in the almost universal counting-device
called (in England) the “five-barred gate”. It is used by innkeepers keeping
a tally or “slate” of drinks ordered, by card-players totting up scores, by
prisoners keeping count of their days in jail, even by examiners working out
the mark-distribution of a cohort of students:

1 ¥ 6 HHI 11 B B
2 1 7 BB I 12 HX EB I
3 I 8 BH II 13 HE 88 I
4 I 9 HEIII 14 BH B2 1T
5 HH 10 B OH 15 HE 84 HH

Fic. 1.2, The five-barred gate

* The original tenv-month Roman calendar had 304 days and began with Martius. It was subsequently
lengthened by the addition of two further months, Jansarius and Februarius (our January and February).
Julius Caesar further reformed the calendar, taking the start of the year back to 1 January and giving it 365
days in all, Later, the month of Guintilis was renamed Julivs {our July} in honour of Caesar, and Sextilis
became Augustus in honour of the emperor of that name.

THE LIMITS OF PERCEPTION

Most human societies the world has known have used this kind of
number-notation at some stage in their development and all have tried to
find ways of coping with the unavoidable fact that beyond four (III)
nobody can “read” intuitively a sequence of five strokes (IHII} or more.

ARAMAIC (Egypt)
Elephantine script: 5th to 3rd centuries BCE
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ARAMAIC (Mesopotamia)
Khatra seript: First decades of CE
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ARAMAIC (Syria)

Palmyrenean script: First decades of CE
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CRETAN CIVILISATION
Hieroglyphic script: first half of second millennium BCE
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CRETAN CIVILISATION
Linear script: 1700-1200 BCE
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INDUS CIVILESATION

EGYPT
Hieroglyphic script: third to first millennium BCE 2300-1750 BCE
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Fia. 1.8.
ELAM 1 2 3 4 5 6 7 8 9
“Proto-Elamite” script: Eran, first half of third millennium BCE
Fra. 1.14.
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GREECE
Epidaurus and Argos, 5th o 2ad centuries BCE LYCIAN CIVILISATION
Asia Minor, first half of first millennium BCE
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GREECE Pre-Columbian Central America, 3rd to 14th centuries CE
Thebes, Karistos, 5th to 1st centuries BCE
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MESOPOTAMIA
Archaic Sumerian, beginning of third millennium BCE
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MESOPOTAMIA
Sumerian cuneiform, 2850-2000 BCE
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MESCPOTAMIA
Assyro-Babylonian cuneiform, second to first millennium BCE
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CIVILISATIONS OF MA'IN & SABA (SHEBA)
Southern Arabia, Sth to 1st centuries BCE
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PHOENICIAN CIVILISATION
From 6th century BCE
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URARTU 3
Hieroglyphic script, Armenta, 13th to 9th centuries BCE
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F1e. 1.24.

THE LIMITS OF PERCEPTION

To recapitulate: at the start of this story, people began by counting the
first nine numbers by placing in sequence the corresponding number of
strokes, circles, dots or other similar signs representing “one”, more or less
as follows:

1 0 I I IO ¢ IO 000 QIO
1 2 3 4 5 6 7 8 8

Fic. 1.25.

But because series of identical signs are not easy to read quickly for
numbers above four, the system was rapidly abandoned. Some civilisations
(such as those found in Egypt, Sumer, Elam, Crete, Urartu, and Greece) got
round the difficulty by grouping the signs for numbers from five to nine to
9 according to 2 principle that we might call dyadic representation:

i I Iz Im 1 m 1m . nm
I 11 m nn I
5 6 7 3 9

(B+2) @+3 @+ @4 G449

F16. 1.26.
Other civilisations, such as the Assyro-Babylonian, the Phoenician, the
Egyptian-Aramaean and the Lydian, solved the problem by recourse to
a rule of three:

I 11 i1 i oI III I 1 i
I I LI i 1 o
I II |
1 2 3 4 5 6 7 8 9
B+ (3+2) (3+3) @G+3+1{8+3+DB3+3+3)

Fig. 1.27.

And yet others, like the Greeks, the Manaeans and Sabaeans, the
Lycians, Mayans, Etruscans and Romans, came up with an-idea (probably
based on finger-counting) for a special sign for the number five, proceed-
ing thereafter on a rule of five or quinary system (6=5+1,7=5+2, and
30 on).

There really can be no debate about it now: natural human ability to
perceive number does not exceed four!

So the basic root of arithmetic as we know it today is a very rudimentary
nurnerical capacity indeed, a capacity barely greater than that of some
animals. There’s no doubt that the hurman mind could no more accede by
innate aptifude alone to the abstraction of counting than could crows or
goldfinches. But human societies have enlarged the potential of these very
limited abilities by inventing a number of mental pracedures of enormous
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fertility, procedures which opened up a pathway into the universe of
numbers and mathematics . . .

DEAD RECKONING

Since we can discriminate unreflectingly between conerete quantities only
up to four, we cannot have recourse only to our natural sense of number
to get 1o any quantity greater than four. We must perforce bring into play
the device of abstract counting, the characteristic quality of “civilised”
humanity.

But is it therefore the case that, in the absence of this mental device for
counting (in the way we now understand the term), the human mind is
so enfeebled that it cannot engage in any kind of numeration at all?

It is certainly true that without the abstractions that we call “one”, “two”,
“three”, and so on it is not easy to carry out mental operations. But it does
not follow at all that a mind without numbers of our kind is incapable
of devising specific tools for manipulating quantities in concrete sets.
There are very good reasons for thinking that for many centuries people
were able to reach several numbers without possessing anything like
number-concepts.

There are many ethnographic records and reports from various parts of
Africa, Oceania and the Americas showing that numerous contemporary
“primitive” populations have numerical techniques that allow them to carry
out some “operations”, at least to some extent.

These techniques, which, in comparison to our ewn, could be called
“concrete”, enable such peoples to reach the same results as we would, by
using mediating objects or model collections of many different kinds (pebbles,
shells, bones, hard fruit, dried animal dung, sticks, the use of notched
bones or sticks, etc.). The techniques are much less powerful and often
more complicated than our own, but they are perfectly serviceable for
establishing (for example) whether as many head of cattle have returned
from grazing as went out of the cowshed. You do not need to be able to
count by numbers to get the right answer for problems of that kind.

ELEMENTARY ARITHMETIC

It all started with the device known as “one-for-one correspondence”.
This allows even the simplest of minds to compare two collections of beings
or things, of the same kind or not, without calling on an ability to count
in numbers. It is a device which is both the prehistory of arithmetic, and
the dominant made of operation in all contemporary “hard” sciences.
Here is how it works: You get on a bus and you have before you (apart

if

from the driver, who is in a privileged position) two sets: a set of seats and
aset of passengers. In one glance you can tell whether the two sets have “the
same number” of elements; and, if the two sets are not equal, you can tell
just as quickly which is the larger of the two. This ready-reckoning of
number without recourse to numeration is more easily explained by the
device of one-for-one correspondence.

I there was no one standing in the bus and there were some empty seats,
you would know that each passenger has a seat, but that each seat dees not
necessarily have a passenger: therefore, there are fewer passengers than
seats. In the contrary case — if there are people standing and all the seats are
taken — you know that there are more passengers than seats. The third
possibility is that there is no one standing and all seats are taken: as each
seal corresponds to one passenger, there are as many passengers as seats.
The last situation can be described by saying that there is a mapping (or 2
biunivocal correspondence, or, in terms of modern mathematics, a bijection)
between the number of seats and the number of passengers in the bus.

At about fifteen or sixteen months, infants go beyond the stage of simple
observation of their environment and become capable of grasping the
principle of one-for-one correspondence, and in particular the property
of mapping. If we give a baby of this age equal numbers of dolls and little
chairs, the infant will probably try to fit one doll on each seat. This kind of
play is nothing other than mapping the elements of one set (dolls) onto the
elements of a second set (chairs). But if we set out more dolls than chairs {or
more chairs than dolls), after a time the baby will begin to fret: it will have
realised that the mapping isn’t working.

F16. 1.28. Twa sets map if for each clement of one set there is a corresponding single element of
the other, and vice versa,

This mental device does not only provide a means for comparing two
groups, but it also allows its user to manipulate several numbers without
knowing how to count or even to name the quantities involved,
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If you work at a cinemna box-office you usually have a seating plan of the
auditorium in front of you. There is one “box” on the plan for each seat in
the auditorium, and, each time you sefl a ticket, you cross out one of the
boxes on the plan. What you are doing is: mapping the seats in the cinerna
onto the boxes on the seating plan, then mapping the boxes on the
plan onto the tickets sold, and finally, mapping the tickets sold onto
the number of people allowed into the auditorium. So even if you are too
lazy to add up the number of tickets you've sold, you'll not be in any doubt
about knowing when the show has sold out.

To recite the attributes of Allah or the obligatory laudations after
prayers, Muslims habitually use a string of prayer-beads, each bead corre-
sponding to one divine attribute or to one laudation. The faithful “tell their
beads” by slipping a bead at a time through their fingers as they proceed
through the recitation of eulogies or of the attributes of Allah.

FiG. 1.29. Muslim prayer-beads (subba or sebha in Arabic) used for reciting the 39 attributes
of Allah or for supereragatory laudations. This indispensable piece of equipment  for piigrims and
dervishes is made of wooden, mother-of-pearl or ivary beads that can be slipped through the fingers.
It is often made up of three graups of beads, separated by two larger “marker” beads, with an even
larger bead indicating the start, There are usually @ hundred beads on a string (33+33+33+ 1),
but the number varies. .

Buddhists have also used prayer-beads for a very long time, as have
Catholics, for reciting Pater noster, Ave Maria, Gloria Palri, etc. As these
litanies must be recited several times in a quite precise order and number,
Christian rosaries usually consist of a necklace threaded with five times ten
small beads, each group separated by a slightly larger bead, together with
a chain bearing one large then three small beads, then one large bead
and a cross. That is how the litanies can be recited without counting but
without omission — each small bead on the ring corresponds to one Ave
Maria, with a Gloria Patri added on the last bead of each set of ten, and
a Pater noster is said for each large bead, and so on.

The device of one-for-one correspondence has thus allowed these

ELEMENTARY ARITHMETIC

religions to devise a system which ensures that the faithful do not lose
count of their litanies despite the considerable amount of repetition
required. The device can thus be of use to the most “civilised” of societies;
and for the completely “uncivilised” it is even more valuable.

Let us take someone with no arithmetical knowledge at all and send him
to the grocery store to get ten loaves of bread, five bottles of cooking oil,
and four bags of potatoes. With no ability to count, how could this person
be trusted to bring back the correct amount of change? But in fact such a
person is perfectly capable of carrying out the errand provided the proper
equipment is available. The appropriate kit is necessarily based on the
principle of one-for-one correspondence. We could make ten purses out of
white cloth, corresponding to the ten loaves, five yellow purses for the
bottles of cooking oil, and four brown purses, for the bags of potatoes.
In each purse we could put the exact price of the corresponding item of
purchase, and all the uneducated shopper needs to know is that a white
purse can be exchanged for a loaf, a yellow one for & bottle of oil and
a brown one for a bag of potatoes.

This is probably how prehistoric humanity did arithmetic for many
millennia, before the first glimmer of arithmetic or of number-concepts
arose.

Imagine a shepherd in charge of a flock of sheep which is brought back
to shelter every night in a cave. There are fifty-five sheep in this flock.
But the shepherd doesn’t know that he has fifty-five of them since he does
not know the number “55™: all he knows is that he has “many sheep”. Even
50, he wants to be sure that all his sheep are back in the cave each night.
So he bas an idea - the idea of a concrete device which prehistoric
humanity used for many millennia. He sits at the mouth of his cave and
lets the animals in one by one. He takes a flint and an old bone, and cuts
a notch in the bone for every sheep that goes in. So, without realising the
mathematical meaning of it, kie has made exactly fifty-five incisions on
the bone by the time the last animal is inside the cave. Henceforth the
shepherd can check whether any sheep in his flock are missing. Every time
he comes back from grazing, he lets the sheep into the cave one by one,
and moves his finger over one indentation in the tally stick for each one.
If there are any marks left on the bone after the last sheep is in the cave,
that means he has lost some sheep. If not, all is in order. And if meanwhile
a new lamb comes along, all he has to do is to make another notch in
the tally bone.

So thanks to the principle of one-for-one correspondence it is possible
to manage to count even i the absence of adequate words, memory or
abstraction.

One-for-one mapping of the elements of one set onto the elements of
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a second set creates an abstract idea, entirely independent of the type
or nature of the things or beings in the one or other set, which expresses
a property commen to the two sets. In other words, mapping abolishes
the distinction that holds between two sets by virtue of the type or nature
of the elements that constitute them. This abstract property is precisely
why one-for-one mapping is a significant tool for tasks involving enumera-
tion; but in practice, the methods that can be based on it are only suitable
for relatively small sets. )

This is why model collections can be very useful in this domain. Tally
sticks with different numbers of marks on them constitute so to speak a
range of ready-made mappings which can be referred to independently of
the type or nature of the elements that they originally referred to. A stick
of ivory or wood with twenty notches on it can be used to enumerate
twenty men, twenty sheep or twenty goats just as easily as it can be used
for twenty bison, twenty horses, twenty days, twenty pelts, twenty kayaks,
or twenty measures of grain. The only number technique that can be built
on this consists of choosing the most appropriate tally stick from the ready-
mades so as to obtain a one-to-one mapping on the set that you next want
to count.

However, notched sticks are not the only concrete model collections avail-
able for this kind of matching-and-counting. The shepherd of our example
could also have used pebbles for checking that the same number of sheep
come into the cave every evening as went out each morning. All he needs to
do to use this device would be to associate one pebble with each head of
sheep, to put the resulting pile of pebbles in a safe place, and then to count
them out in a reverse procedure on returning from the pasture. If the last

animal in matches the last pebble in the pile, then the shepherd knows 1 zight hand litle finger 18 left foot [ittle toe
for sure that none of his flack has heen lost, and if a lamb has been bomn 2 right hand ring Anger 19 next toe
meanwhile, all he needs to do is to add a pebble to the pile. i Eg:: :’;:(?:;ﬁe finger gg 2::: :ge
bl |

All over the globe people have used a variety of objects for this purpose: 5 I;Eht thumb 22 left foot big toe
shells, pearls, hard fruit, knucklebones, sticks, elephant teeth, coconuts, 6 right wrist 23 left ankle
clay pellets, cocoa beans, even dried dung, organised into heaps or lines ; ‘fgat eﬁm‘;’d 3: :eg }}:f’ee

L. h . right shoulder eft hi

corresponding in number to the tally of the things needing to be checked. 9 stﬁmum % right l']IJip
Marks made in sand, and beads and shells, strung on necklaces or made 10 left shoulder 27 right knee
into rosaries, have also been used for keeping tallies, L left elbow 28 right ankle

B tod | “orimitive” it ts of the bodv & 12 left wrist ‘ 29 right foot big toe

. ven today, several “primitive” communities use parts of the body for 13 left thumb oD 30 next toe
this purpose. Fingers, toes, the articulations of the arms and legs (elbow, 14 left index finger 33 Yy 449 18 31 next toe
wrist, knee, ankle . . . ), eyes, nose, mouth, ears, breasts, chest, sternum, 15 left hand middle finger 32 579 ‘29 229919 32 next toe
hips and so on are used as the reference elements of one-for-one counting 16 ft hand ring finger 30 2 33 right foa life toe

o 17 left hand little finger

systems. Much of the evidence comes from the Cambridge Anthropological
Expedition to Oceania at the end of the last century. According to Wryatt
Gill, some Torres Straits islanders “counted visually” (see Fig. 1.30}: F16. 1.30. Body-counting system used by Torres Straits islanders




ELEMENTARY ARITHMETIC

12 mouth

10 right eye 13 left eye

11 nose

F16. 1.31. System used by Papuans {New Guinea) FrG. 1.32. Body-counting system used by the Elema (New Guinea)
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They touch first the fingers of their right hand, one by one, then the right
wrist, elbow and shoulder, go on to the sternum, then the left-side
articulations, not forgetting the fingers. This brings them to the number
seventeen, If the total needed is higher, they add the toes, ankle, knee
and hip of the left then the right hand side. That gives 16 more, making
33 in all. For even higher numbers, the islanders have recourse to a
bundle of small sticks. [As quoted in A. C. Haddon (1890)]

Murray islanders also used parts of the body in a conventional order, and
were able to reach 29 in this manner. Other Torres Straits islanders used
similar procedures which enabled them to “count visually” up to 19; the
same customs are found amongst the Papuans and Elema of New Guinea.

NUMBERS, GESTURES, AND WORDS

The question arises: is the mere enumeration of parts of the body in regular
order tantamount to a true arithmetical sequence? Let us try to find the
answer in some of the ethnographic literature relating to Oceania,

The first example is from the Papuan language spoken in what was
British New Guinea. According to the report of the Cambridge Expedition
to the Torres Straits, Sir William MacGregor found that “body-counting”
was prevalent in all the villages below the Musa river. “Starting with the
little finger on the right hand, the series proceeds with the right-hand
fingers, then the right wrist, elbow, shoulder, ear and eye, then on to the left
eye, and so on, down to the little toe on the left foot.” Bach of the gestures
to these parts of the body is accompanied, the report continues, by a
specific term in Papuan, as follows:

NUMBER NUMBER-GESTURE GESTURE-WORD
1 right hand little finger anusi
2 right hand ring finger doro
3 right hand middle fingee doro
4 right hand index finger doro
5 right thumb ubei
6 right wrist tama
7 right elbow unubo
8 right shoulder visa
9 right ear denoro

10 right eye diti
11 left eye diti
12 nose medo
13 mouth bee
14 left ear denoro

14

NUMBER NUMBER-GESTURE GESTURE-WORD
15 feft shoulder visa
16 left elbow unubo
17 left wrist tama
18 left thumb ubei
19 left hand index finger doro
20 left hand middle finger dore
21 left hand ring finger doro
22 left hand kittle finger anusi

The words used are simply the names of the parts of the body, and
strictly speaking they are not numerical terms at all. Anusi, for example, is
associated with both 1 and 22, and is used to indicate the Jittle fingers of
both the right and the left hands. In these circumstances how can you know
which number is meant? Similarly the term doro refers to the ring, middle
and index fingers of both hands and “means” either 2 or 3 or 4 or 19 or 20
or 21. Without the accompanying gesture, how could you possibly tell
which of these numbers was meant?

However, there is no ambiguity in the system. What is spoken is the
name of the part of the body, which has its rank-order in a fixed, conven-
tional sequence within which no confusion is possible. So there is no doubt
that the mere enumeration of the parts of the body does not constitute
a true arithmetical sequence unless it is associated with a corresponding
sequence of gestures. Moreover, the mental counting process has no direct
oral expression — you can get to the number required without uttering
a word. A conventional set of “number-gestures” is all that is needed.

Tn those cases where it is possible to recover the original meanings of the
names given to numbers, it often turns out that they retain traces of body-
counting systems like those we have looked at. Here, for example, are the
number-words used by the Bugilai (former British New Guinea) together
with their etymological meanings:

1 tarangesa left hand little finger
2 meta kina next finger
3 guigimeta kina  middle finger
4 topew index finger
5 manda thumb
6 gaben wrist
7 trankgimbe elbow
8 podei shoulder '
9 ngama left breast
10 dala right breast

[Source: ]. Chalmers (1898)]
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E. C. Hawtrey {1902} also reports that the Lengua people of the Chaco
(Paraguay) use a set of number-names broadly derived from specific
number-gestures. Special words apparently unrelated to body-counting are
used for 1 and 2, but for the other numbers they say something like:

“made of one and two”

“both sides same”

“one hand”

“reached other hand, one”

“reached other hand, twao”

“reached other hand, made of one and two”
“reached other hand, both sides same”

10 “finished, both hands”

11 “reached foot, one”

12 “reached foot, two”

13 “reached foot, made of one and two”

14 “reached foot, both sides same”

15  “finished, foot”

16  “reached other foot, one”

17 “reached other foot, two”

18  “reached other foot, made of one and two”
19 “reached other foot, both sides same”

20 “fimished, feet”

O 00 ~] O v =

The Zuili have names for numbers which F. H. Cushing (1892) calls
“manual concepts™

1 tipinte taken to begin

2 hwilli raised with the previous

3 khal the finger that divides equally

4 awite all fingers raised bar one

5 dpte the scored one

6  topalikye another added to what is counted
already

7 kwillikya two brought together and raised
with the others

three brought together and raised
with the others

all bar one raised with the others

all the fingers

8 khailikya

9 tenalikya
10 dstem'thila
1 dstem'thila
topayd'thl’ tona  all the fingers and one more raised
and so on.

NUMBERS, GESTURES, AND WORDS

All this leads us to suppose that in the remotest past gestures came
before any oral expression of numbers.

CARDINAL RECKONING DEVICES FOR
CONCRETE QUANTITIES

Let us now imagine a group of “primitive” people lacking any conception
of abstract numbers but in possession of perfectly adequate devices for
“reckoning” relatively small sets of concrete objects. They use all sorts of
model collections, but most often they “reckon by eye” in the following
manner: they touch each other’s right-hand fingers, starting with the little
finger, then the right wrist, elbow, shoulder, ear, and eye. Then they touch
each others’ nose, mouth, then the left eye, ear, shoulder, elbow, and wrist,
and on to the little finger of the left hand, getting to 22 so far. If the number
needed is higher, they go on to the breasts, hips, and genitals, then the
knees, ankles and toes on the right then the left sides. This extension allows
19 further integers, or a total of 41,

The group has recently skirmished with a rebellious neighbouring village
and won. The group's leader decides to demand reparations, and entrusts
one of his men with the task of collecting the ransom. “For each of the
warriors we have lost”, says the chief, “they shall give us as many pearl
necklaces as there are from the little finger on my right hand to my right
eye, as many pelts as there are from the little finger of my right hand to my
mouth, and as many baskets of food as there are from the little finger of
my right hand to my left wrist.” What this means is that the reparation
for each lost soldier is:

10 pear! necklaces
12 pelts
17 baskets of food

In this particular skirmish, the group lost sixteen men. Of course none
amongst the group has a notion of the number “16”, but they have an
infallible method of determining numbers in these situations: on departing
for the fight, each warrior places a pebble on a pile, and on his return each
surviving warrior picks a pebble out of the pile. The number of unclaimed
pebbles corresponds precisely to the number of warriors lost.

One of the leader's envoys then takes possession of the pile of remaining
pebbles but has them replaced by a matching bundle of sticks, which is
easier to carry. The chief checks the emissaries’ equipment and their
comprehension of the reparations required, and sends them off to parley
with the enemy.

The envoys tell the losing side how much they owe, and proceed to
enumerate the booty in the following manner: one steps forward and says:
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“Bring me a pearl necklace each time I point to a part of my body,” and he
then touches in order the little finger, the ring finger, the middle finger, the
index finger and the thumb of his right hand. So the vanquished bring him
one necklace, then a second, then a third and so on up to the fifth. The
envoy then repeats himself, but pointing to his right wrist, elbow, shoulder,
ear and eye, which gets him five more necklaces. So without having any
concept of the number “10” he obtains precisely ten necklaces.

Another envoy proceeds in identical fashion to obtain the twelve pelts,
and a third takes possession of the seventeen baskets of food that are
demanded.

That is when the fourth envoy comes into the equation, for he possesses
the tally of warriors Jost in the battle, in the form of a bundle of sixteen
sticks. He sets one aside, and the three other envoys then repeat their oper-
ations, allowing him to set another stick aside, and 5o on, until there are no
sticks left in the bundle. That is how they know that they have the full tally,
and so collect up the booty and set off with it to return to their own village.

As can be seen, “primitives” of this kind are not using bedy-counting in
exactly the same way as we might. Since we know how to count, a conven-
tional order of the parts of the body would constitute a true arithmetical
sequence; each “body-point” would be assimilated in our minds to a
cardinal (rank-order) number, characteristic of a particular quantity of
things or beings. For instance, to indicate the length of a week using this
system, we would not need to remember that it contained as many days
as mapped onto our bodies from the right little finger to the right elbow,
since we could just attach to it the “rank-order number” called “right
elbow”, which would suffice to symbolise the numerical value of any set of
seven elements.

That is because we are equipped with generalising abstractions and in
particular with number-concepts. But “primitive” peoples are not so
equipped: they cannot abstract from the “points” in the numbering
sequence: their grasp of the sequence remains embedded in the specific
nature of the “points” themselves. Their understanding is in effect
restricted to one-for-one mapping; the only “operations” they make are to
add or remove one or more of the elernents in the basic series.

Such people do not of course have any abstract concept of the number
“ten”, for instance. But they do know that by touching in order their little
finger, ring finger, middle finger, index finger and thumb on the right hand,
then their right wrist, elbow, shoulder, ear, and eye, they can “tally out” as
many men, animals or objects as there are body-points in the sequence.
And having done so, they remember perfectly well which body-point any
particular tally of things or people reached, and are able to repeat the
operation in order to reach exactly the same tally whenever they want to.
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1 right hand little finger
2 right hand ring finger

3 right hand middle finger

4 sight hand index finger
right thumb

right wrist
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left thumb

left hand index finger
left hand middle finger
left hand ring finger

F1G. 1.33.

a2

33 ©5;

&
34 35736

29

) 41

3

37 3832

32

41

22

16

i3

A 19
2120

left hand little finger
right breast

left breast

vight hip

left hip

genitals

right knee

left knee

right ankle

left ankle

right foot little toe
next toe

next toe

next toe

right foet big toe
left foot big toe
next toe

next toe

next toe

left foot little toe



17

FiG. 1.34.

Counting the seventeen baskets of food

Counting the tvelve pelts

Counting the ten neckiaces

CARDINAL RECKONING DEVICES

In other words, this procedure is a simple and convenient means of
establishing ready-made mappings which can then be mapped one-to-one
onto any sets for which a total is required. So when our imaginary tribe
went to collect its ransom, they used only these notions, not any true
numnber-concepts. They simply mapped three such ready-made sets onto
a set of ten necklaces, a set of twelve pelts, and a set of seventeen baskets
of food for each of the lost warriors.

These body-counting points are thus not thought of by their users as
“numbers”, but rather as the last elements of model sets arrived at after
a regulated {conventional) sequence of body-gestures. This means that
for such people the mere designation of any one of the points is not sufficient
to describe a given number of beings or things unless the term uttered is accom-
panied by the corresponding sequence of gestures. So in discussions concerning
such and such a number, no real “number-term” is uttered: instead, a given
number of body-counting points will be enumerated, alongside the simul-
taneous sequence of gestures. This kind of enumeration therefore fails to
constitute a genuine arithmetical series; participants in the discussion must
also necessarily keep their eyes on the speaker!

All the same, our imaginary tribestnen have unknowingly reached quite
large numbers, even with such limited tools, since they have collected:

16 % 10 = 160 necklaces
16 x 12 = 192 pelts
16 % 17 = 272 baskets of food

ot six hundred and twenty-four items in alll (see Fig. 1.34)

There is a simple reason for this: they had thought of associating easily
manipulated material objects with the parts of the body involved in their
counting operations. It is true that they counted out the necklaces, pelts and
food-baskets by their traditional body-counting method, but the determin-
ing element in calculating the ransom to be paid (the number of men lost in
the battle) was “numerated” with the help of pebbles and a bundle of sticks.

Let us now imagine that the villagers are working out how to fix the date
of an important forthcoming religious festival. The shaman who that
morning proclaimed the arrival of the new moon also announced in the
following way, accompanying his words with quite precise gestures of his
hands, that the festival will fall on the thirteenth day of the eighth moon there-
after: “Many suns and many moons will rise and fall before the festival. The
moon that has just risen must first wax and then wane completely. Then it
must wax as many times again as there are from the little finger on my right
hand to the elbow on the same side. Then the sun will rise and set as many
times as there are from the little finger on my right hand to my mouth. That
is when the sun will next rise on the day of our Great Festival.”
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This community obviously has a good grasp of the lunar cycle, which is
only to be expected, since, after the rising and the setting of the sun, the
moon’s phases constitute the most obvious regular phenomenon in
the natural environment. As in all empirical calendars, this one is based
on the observation of the first quarter after the end of each cycle. With the
help of model collections inherited from forebears, many generations of
whom must have contributed to their slow development, the community
can in fact “mark time” and compute the date thus expressed without error,
as we shall see, ]

On hearing the shaman’s pronouncement, the chief of the tribe paints a
number of marks on his own body with some fairly durable kind of colour-
ing material, and thiese marks enable him to record and to recognise the
festival date unambiguously. He first records the series of reappearances
that the moon must make from then until the festival by painting small
circles on his right-hand little finger, ring finger, middle finger, index finger,
thumb, wrist, and elbow. Then he records the number of days that must
pass from the appearance of the last moon by painting a thin line, first of all
on each finger of his right hand, then on his right wrist, elbow, shoulder,
ear, and eye, then on his nose and mouth. To conclude, he puts a thick line
over his left eye, thereby symbolising the dawn of the great day itself.

The following day at sunset, a member of the tribe chosen by the chief
to “count the moons” takes one of the ready-made ivory tally sticks with
thirty incised notches, the sort used whenever it is necessary to reckon the
days of a given moon in their order of succession (see Fig. 1.35). He ties
a piece of string around the first notch. The next evening, he ties a piece of
string around the second notch, and so on every evening until the end
of the moon, When he reaches the penultimate notch, he looks carefully at
the night sky, in the region where the sun has just set, for he knows that the
niew moon is soon due to appear.

On that day, however, the first quarter of the new moon is not visible in
the sky. So he looks again the next evening when he has tied the string
around the last notch on the first tally stick; and though the sky is not clear
enough to let him see the new moon, he decides nonetheless that a new
month has begun. That is when he paints a little circle on his right kittle
finger, indicating that one lunar cycle has passed.

At dusk the following day, our “moon-counter” takes another similar
tally stick and ties a string ardund the first notch. The day after, he or she
proceeds likewise with the second notch, and so on to the end of the second
month. But at that month’s end the tally man knows he will not need to
scan the heavens to check on the rising of the new moon. For in this tribe,
the knowledge that moon cycles end alternately on the penultimate and
last notches of the tally sticks has been handed down for generations. And
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this knowledge is only very slightly inaccurate, since the average length of

a lunar cycle is 28 days and 12 hours.
L1 day passed
2 days passed
3 days passed
4 days passed
5 days passed

& days passed
7 days passed

Fic. 1.35.

The moon-counter proceeds in this manner through alternating months
of 29 and 30 days until the arrival of the last moon, when he paints a little
circle on his right elbow. There are now as many circles on the counter’s
body as on the chief's: the counter’s task is over: the “moon tally” has been
reached.

The chief now takes over as the “day-counter”, but for this task tally
sticks are not used, as the body-counting points suffice. The community
will celebrate its festival when the chief has crossed out all the thin Jines
from his little finger to his mouth and also the thick line over his left eye,
that is to say on the thirteenth day of the eighth moon (Fig. 1.36)

This reconstitution of a non-numerate counting system conforms to
many of the details observed in Australian aboriginal groups, who are able
to reach relatively high numbers through the (unvocalised) numeration
of parts of the body when the body-points have a fixed conventional order
and are associated with manipulable model collections - knotted string,
bundles of sticks, pebbles, notched bones, and so on.

Valuable evidence of this kind of system was reported by Brooke,
observing the Dayaks of South Borneo. A messenger had the task of inform-
ing a number of defeated rebel villages of the sum of reparations they had
to pay to the Dayaks.

The messenger came along with some dried leaves, which he broke
into pieces. Brooke exchanged them for pieces of paper, which were
more convenient. The messenger laid the pieces on a table and used his
fingers at the same time to count them, up to ten; then he put his foot
on the table, and counted them out as he counted out the pieces of
paper, each of which corresponded to a village, with the name of its
chief, the number of warriors and the sum of the reparation. When he
had used up all his toes, he came back to his hands. At the end of the
list, there were forty-five pieces of paper laid out on the table.* Then

* Each finger is asseciated with one piece of paper and one village, in this particular system, and each tee
with the set of ten fingers.
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he asked me to repeat the message, which I did, whilst he ran through
the pieces of paper, his fingers and his toes, as before.

“So there are our letters,” he said. “You white folk don’t read the way
we do.”

The appointed day:
the £3th day of the
8th moon

D-Day 4 Lefieye

12days | 4—————— Mouth

1. days Nose

e

10 days

—

 days

8§ days

7 days

& days

5 days

4 days

3 days

2 days

1 day

3

T
LINES CIRCLES

F1G. 1.36.

Later that evening he repeated the whole set correctly, and as he put
his finger on each piece of paper in order, he said:

“So, if I remember it tomorrow morning, all will be well; leave the
papers on the table.” '

Then he shuffled them together and made them into a heap.
As soon as we got up the next morning, we sat at the table, and he
re-sorted the pieces of paper into the order they were in the previous
day, and repeated all the details of the message with complete
accuracy. For almost a month, as he went from village to village, deep

CARDINAL RECKONING DEVICES

in the interior, he never forgot the different sums demanded. [Adapted
from Brooke, Ten Years in Sarawak)
All this leads us to hypothesise the following evolution of counting
systems:

First stage

Only the lowest numbers are within human grasp. Numerical ability
remains restricted to what can be evaluated in a single glance. “Number” is
indissociable from the concrete reality of the objects evaluated.*  In order
to cope with quantities above four, a number of concrete procedures are
developed. These include finger-counting and other body-counting
systems, all based on one-for-one correspondence, and leading to the devel-
opment of simple, widely-available ready-made mappings. What is
articulated (lexicalised) in the language are these ready-made mappings,
accompanied by the appropriate gestures.

Second stage
24th day
By force of repetition and habit, the list of

the names of the body-parts in their
nurmnerative order imperceptibly acquire
abstract connotations, especially the first
five, They slowly lose their power to suggest
the actual parts of the body, becoming
progressively more attached to the corre-
sponding number, and may now be applied
to any set of objects. (L. Lévy-BruhD)

25th day

26th day

27th day

Third stage 28th day

A fundamental tool emerges: numerical
nomenclature, or the names of the

numbers. 29th day

F1c. 1.37. Detail from a “material model” of a lunar
calendar formerly in use amongst tribal populations in
jformer Dakomey (West Africa). It consists of a strip of
cloth onto which thirly objects (seeds, kernels, shells,
hard fruit, stones, eic.) have been sewn, each standing
Jor one of the days of the month, (The fragment above
represents the last seven days). From the Musée de
I'Homme, Paris.

© 30th day

" Thus as L. Lévy-Bruhl repests, Fijians and Solomon islanders have collective nouns for tens of arbitrariiy
selected items that express neither the number itself nor the objects collected into the set. In Fijian, bola
means “a hundred dugouts”, koro “a hundred coconuts”, safave “a thousand coconuts”™. Natives of Mota say
akut peperna (“butterfly bwe dugout”) for “a pair of dugouts” because of the appearance of the sails. See also
Codrington, E. Stephen and L. L. Corant.
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COUNTING: A HUMAN FACULTY 1 - ;

The human mind, evidently, can only grasp integers as abstractions if it has

fully available to it the notion of distinct units as well as the ability to 141 \f;\ \ﬁ . 5
“synthesise” thern. This intellectual faculty (which presupposes above all a

complete mastery of the ability to analyse, to compare and to abstract from

individual differences) rests on an idea which, alongside mapping and e+ m%ﬁ 3

classification, constitutes the starting point of all scientific advance.

This creation of the human mind is called “hierarchy relation” or “order 1+7+141 %M?}fm—% 4

relation™ it is the principle by which things are ordered according to their

“degree of generality”, from individual, to kind, to type, to species, and so on. 141414141 %m % ﬁ % 5

Decisive progress .towards the art of abstract calculation that we now

use could only be made once it was clearly understood that the integers
could be classified into a hierarchised system of numerical units whose terms

were related as kinds within types, types within species, and so on.

Such an organisation of numerical concepts in an invariable sequence 1+1+.. .41 %@ ces }mm%@ n

is related to the generic principle of “recurrence” to which Aristotle

referred (Metaphysics 1057, a) when he said that an integer was a “multi- T+le 41 41 m\m c %m)ﬁ N+l
TR 4¥ £5F

plicity measurable by the one”. The idea is really that integers are n

“collections” of abstract units obtained successively by the adjunction of
further units.

Any element in the regular sequence of the integers (other than 1) is obtained
by adding 1 to the integer immediately preceding in the “natural” sequence that is F16. 1.38. The generation of integers by the so-called procedure of recurrence
so constituted (see Fig. 1.38). As the German philosopher Schopenhauer put
it, any natural integer presupposes its preceding numbers as the cause of its

~  existence: for our minds cannot conceive of a number as an abstraction
unless it subsumes all preceding numbers in the sequence. This is what we ° .
called the ability to “synthesise” distinct units. Without that ability, LI
number-concepts remain very cloudy notions indeed. e

But ence they have been put into a natural sequence, the set of integers °
permits another faculty to come into play: numeration. To numerate the N
itemns in a group is to assign to each a symbol (that is to say, a word, a .
gesture or a graphic mark) corresponding to a number taken from the . ® o
natural sequence of integers, beginning with 1 and proceeding in order .
until the exhaustion of that set (Fig. 1.40). The symbol or name given to s
each of the elements within the set is the name of its order number within ¢ o .
the collection of things, which becomes thereby a sequence or procession o
of things. The order number of the last element within the ordered group . °
is precisely equivalent to the number of elements in the set. Obviously . .
the number obtained is entirely independent of the order in which the
elements are numerated — whichever of the elements you begin with, you
always end up with the same total. F16. 1.39. Numeration of a “cloud” of dots
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For example, let us take a box containing “several” billiard balls. We take
out one at random and give it the “number” 1 (for it is the first one to come
out of the box). We take another, again completely at random, and give
it the “number” 2. We confinue in this manner until there are no billiard
balls left in the box. When we take out the last of the balls, we give it
a specific number from the natural sequence of the integers. If its number
is 20, we say that there are “twenty” balls in the box. Numeration has
allowed us to transform a vague notion (that there are “several” billiard
balls) into exact knowledge.

In like manner, let us consider a set of “scattered” points, in other words
dots in a “disordered set” (Fig. 1.39). To find out how many dots there are,

COUNTING: A HUMAN FACULTY

all we have to do is to connect them by a “zigzag” line passing through each
dot once and no dot twice. The points then constitute what is commonly
called a chain. We then give each point in the chain an order-number, start-
ing from one of the ends of the chain we have just made. The last number,
given therefore to the last point in the chain, provides us with the total
number of dots in the set.

So with the notions of succession and numeration we can advance from
the muddled, vague and heterogeneous apperception of concrete plurality
to the abstract and homogenous idea of “absolute quantity™.

So the human mind can only “count” the elements in a set if it is in
possession of all three of the following abilities:

1. the ability to assign a “rank-order” to each element in a procession;
2. the ability to insert into each unit of the procession the memory of
ail those that have gone past before;

3. the ability to convert a sequence into a “stationary” vision.

The concept of number, which at first sight seemed quite elementary,
thus turns out to be much mere complicated than that. To underline this
point I should like to repeat one of P. Bourdin’s anecdotes, as quoted in R.
Balmés (1965):

I once knew someone who heard the bells ring four as he was trying to
go to sleep and who counted them out in his head, one, one, one, one,
Struck by the absurdity of counting in this way, he sat up and shouted:
“The clock has gone mad, it’s struck one o'clock four times over!”

THE TWO SIDES OF THE INTEGERS

The concept of number has two complementary aspects: cardinal
numbering, which relies only on the principle of mapping, and ordinal
numeration, which requires both the technique of pairing and the idea
of succession.

Here is a simple way of grasping the difference. January has 31 days. The
number 31 represents the total number of days in the month, and is thus in
this expression a cardinal number. However, in expressions such as “31
January 1996”7, the number 31 is not being used in its cardinal aspect
(despite the terminology of grammar books) because here it means some-
thing like “the thirty-first day” of the month of January, specifying not
a total, but a rank-order of a specific (in this case, the last) element in a set
containing 31 elements. It is therefore unambiguously an ordinal number.

We have learned to pass with such facility from cardinal to ordinal
number that the twe aspects appear to us as one. To determine the
plurality of a collection, i.e. its cardinal number, we do not bother any
more to find a model collection with which we can match it — we count
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it. And to the fact that we have learned to identify the two aspects of
number is due our progress in mathematics. For whereas in practice
we are really interested in the cardinal number, this latter is incapable
of creating an arithmetic. The operations of arithmetic are based
on the tacit assumption that we can always pass from any number to its
siecessor, and this Is the essence of the ordinal concept.

And so matching by itself is incapable of creating an art of
reckoning. Without our ability to arrange things in ordered succession
little progress could have been made. Correspondence and succession,
the two principles which permeate all mathematics — nay, all realms of
exact thought — are woven into the very fabric of our number-system.

{T. Dantzig (1930)]

TEN FINGERS TO COUNT BY

Humankind slewly acquired all the necessary intellectual equipment
thanks to the ten fingers on its hands. It is surely no coincidence if children
still learn to count with their fingers — and aduits too often have recourse to
them to clarify their meaning.

Traces of the anthropomorphic origin of counting systems can be found
in many languages. In the Ali language (Central Africa), for example, “five”
and “ten” are respectively moro and mbouna: mero is actually the word for
“hand” and mbouna is 2 contraction of moro (“five”) and bouna, meaning
“twa” (thus “ten” = “two hands™).

CARDINAL ASPECT ORDINAL ASPECT

fourth finger

4 fingers
fifth finger

5 fingers
first finger

5
£
&
=
o
=
=
=

Fic. 1.41.
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It is therefore very probable that the Indo-European, Semitic and
Mongolian words for the first ten numbers derive from expressions related
to finger-counting. But this is an unverifiable hypothesis, since the original
meanings of the names of the numbers have been lost.

In any case, the human hand is an extremely serviceable tool and
constitutes a kind of “natural instrument” well suited for acquiring the first
ten numbers and for elementary arithmetic,

Because there are ten fingers and because each can be moved indepen-
dently of the others, the hand provides the simplest “model collection” that
people have always had - so to speak — to hand.

The asymmetric disposition of the fingers puts the hand in harmony
with the normal limitation of the human ability to recognise number
visually (a limit set at four). As the thumb is set at some distance from
the index finger it is easy to treat it as being “In opposition” to the elemen-
tary set of four, and makes the first five numbers an entirely natural
sequence. Five thus imposes itself as a basic unit of counting, alongside
the other natural grouping, ten. And because each of the fingers is actually
different from the others, the human hand can be seen as a true succession
of abstract units, obtained by the progressive adjunction of one to the
preceding units,

In brief, one can say that the hand makes the two complementary
aspects of integers entirely intuitive. It serves as an instrument permitting
natural movement between cardinal and ordinal numbering. If you need to
show that a set contains three, four, seven or ten elements, you raise or
bend simultaneously three, four, seven or ten fingers, using your hand as

cardinal mapping. If you want to count out the same things, then you bend
or raise three, four, seven or ten fingers in succession, using the hand as an
ordinal counting teol (Fig. 1.41).

The human hand can thus be seen as the simplest and most natural
counting machine. And that is why it has played such a significant role
in the evolution of our numbering system.



