“This is beyond doubt the most
interesting book on the evolution
of mathematies which has ever

fallen into my hands.”

—AILBERT EINSTEIN

the language

of science

tobias dantzig

edited by joseph mazur 1 foreword by barry mazur

[V NS

[IES—— -

L i T

4 e e e

TOBIAS
DANTZIG

UMBER

The JLanguqge of Jcience

Eelited @
JOSEPH MAZUR

Grprecword. éy
BARRY MAZUR

Ghe MASTERPIECE SCIENCE &dltion

A PLUME BOOK




CHAPTER 4

The Last Number

“But what has been said once, can always
be repeated.”
—Zeno of Elea, as quoted by Simplicius

hat is there in mathematics that makes it the

acknowledged model of the sciences called exact,

and the ideal of the newer sciences which have not
yet achieved this distinction? It is, indeed, the avowed ambition
of the younger investigators at least, in such fields as biology or
the social sciences, to develop standards and methods which
will permit these to join the ever-growing ranks of sciences
which have already accepted the domination of mathematics.

Mathematics is not only the model along the lines of which
the exact sciences are striving to design their structure; mathe-
matics is the cement which holds this structure together. A
problem, in fact, is not considered solved until the studied phe-
nomenon has been formulated as a mathematical law. Why is it
believed that only mathematical processes can lend to observa-
tion, experiment, and speculation that precision, that concise-
ness, that solid certainty which the exact sciences demand?
When we analyze these mathematical processes we find

that they rest on the two concepts: Number and Function; that
Function itself can in the ultimate be reduced to Number; that
the general concept of Number rests in turn on the properties
we ascribe to the natural sequence: one, two, three ....
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It is then in the properties of the whole numbers that we may
hope to find the clue to this implicit faith in the infallibility of
mathematical reasoning!

The first practical application of these properties take the form
of the elementary operations of arithmetic; addition, subtrac-
tion, multiplication, and division of whole numbers. We learn
these operations very early in life and it is not surprising that
most of us have completely forgotten the circumstances under
which we acquired them. Let us refresh our memory.

We began by memorizing the table 1 + 1=2,14+2=3, ....
‘We were drilled and drilled until we were able to add up without
hesitancy any two numbers up to ten. In the course of this first
phase of our instruction, we were taught to observe that 5 + 3 =
3 + 5 and that this was not an accident, but a general rule. Later
we learned to express this property of addition in words: the sum
does not depend on the order of its terms. The mathematician says
no more when he states: addition is a commuiative operation, and
writes in symbols:

a+b=b+a.

We were next shown that (2 + 3} +4 =2 + (3 + 4); by this
was meant that whereas (2 + 3) + 4 meant that we add 3 to 2 and
4 to the sum, it was really immaterial in what order we added,
for the same result would be obtained if to 2 were added the sum
of (3 + 4). The mathematician says no more when he states that
addition is an associative operation, and writes

(a+b)+c=a+(b+c)
We never attached much importance to these statements.

Yet they are fundamental, On them is based the rule for adding
larger numbers. The scheme
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25
34
56
115

is but a compact paraphrase of: .
25+ 34+56=(20+5)+ (30 +4) + (50 +6) =
(20+30+50)+(5+4+6)=100-+15=115
in which the commutativity and associativity of addition play a
fundamental rdle.

We then proceeded to multiplication. Again we memorized a
long table until we could tell mechanically the product of any
two numbers up to ten. We observed that like addition, multipli-
cation was both associative and commutative. Not that we used
these words, but we implied as much.

There was yet another property which concerned multipli-
cation and addition jointly. The product 7 X (2 + 3) means that
seven is to be multiplied by the sum (2 + 3), that is, by 5; but the
same result could be obtained by adding the two partial prod-
ucts (7 x 2) and (7 % 3). The mathematician expresses this in the
general statement: mﬁ]tiplication is distributive with respect to
addition, and writes

alb + ¢) = ab + ac.

- It is this distributivity which is at the bottom of the scheme

which we use in multiplying numbers greater than ten. Indeed,
when we analyze the operation
25
43
75
100
1075
we find it but a compact paraphrase of the involved chain of
operations in which this distributive property is freely used.
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Thus
25x43=(20+5)x(40+3)=[(20+5)><3]+[(20+5)><40}=
(20><3)+(5><3)+(20><40)+(5><40)=75+1000=1075

Such are the facts which form the basis of the mathematical edu-
cation of all thinking men, nay of all people who have had any
schooling at all. On these facts is built arithmetic, the foundation
of mathematics, which in turn supports all science pure and
applied which in turn is the fertile source of all technical
progress.

Later new facts, new ideas, new concepts were added to our
mental equipment, but none of these had to our mind the same
security, the same solid foundation, as these properties of whole
numbers, which we acquired at the tender age of six. This is
expressed in the popular saying: It is as obvious as that two and
two make four,

We learned these at an age when we were interested in the
“how” of things. By the time we were old enough to ask “why,”
these rules, through constant use, had become such an intimate
part of our mental equipment that they were taken for granted.

The individual is supposed to have retraced in his develop-
ment the evolution of the species to which he belongs. Some
such principle governs the growth of the human intellect as well.
In the history of mathematics, the “how” always preceded the
“why,” the technique of the subject preceded its philosophy.

This is particularly true of arithmetic. The counting tech-
nique and the rules of reckoning were established facts at the
end of the Renaissance period. But the philosophy of number
did not come into its own until the last quarter of the nineteenth
century.
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As we grow older, we find ample opportunity to apply these
rules in our daily tasks, and we grow more and more confident
of their generality. The strength of arithmetic lies in its absolute
generality. Tts rules admit of no exceptions: they apply to all
numbers.

All numbers! Everything hangs on this short but so
tremendously important word all.

There is no mystery about this word, when it is applied to
any finite class of things or circumstances. When, for instance,
we say “all living men,” we attach a very definite meaning to it.
We can imagine all mankind arranged in an array of some sort:
in this array there will be a first man, and there will be a last man.
To be sure, to prove in all rigor a property true of all living men
we should prove it for each individual. While we realize that the
actual task would involve insurmountable difficulties, these
difficulties, we feel, are of a purely technical and not of a concep-
tual character. And this is true of any finite collection, i.e., of any
collection which has a last as well as a first member, for any such
collection can be exhausted by counting.

Can we mean the same thing when we say all numbers? Here
too, the collection can be conceived as an array, and this array
will have a first member, the number orne. But how about the last?

The answer is ready: There is no last number! The process of
counting cannot concetvably be terminated. Every number has a
successor. There is an infinity of numbers.

But if there be no last number, what do we mean by all num-
bers, and particularly, what do we mean by the property of all
numbers? How can we. prove such a property: certainly not by
testing every individual case, since we know beforehand that we

cannot possibly exhaust all cases.
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At the very threshold of mathematics we find this dilermnma of
infinity, like the legendary dragon guarding the entrance to the
enchanted garden.

What is the source of this concept of infinity, this faith in the
inexhaustibility of the counting process? Is it experience?
Certainly not! Experience teaches us the finitude of all things, of
all human processes. We know that any attempt on our part to
exhaust number by counting would only end in our own
exhaustion.

Nor can the existence of the infinite be established mathe-
matically, because infinity, the inexhaustibility of the counting
process, is a mathematical assumption, the basic assumption of
arithmetic, on which all mathematics rests. Is it then a supernat-
ural truth, one of those few gifts which the Creator bestowed
upon man when he cast him into the universe, naked and igno-
rant, but free to shift for himself? Or has the concept of infinity
grown upon marn, grown out, indeed, out of his futile attempts
to reach the last number? Is it but a confession of man’s impo-
tence to exhaust the universe by number?

“There is a last number, but it is not in the provinée of man
to reach it, for it belongs to the gods” Such is the keynote of
most ancient religions. The stars in the heavens, the grains of
sand, the drops of the ocean exemplify this ultra-ultimate which
is beyond the mind of man to reach. “He counted the stars and
named them all,” says the psalmist of Jehovah. And Moses in
invoking the promise of God to his chosen people says: “He who
can count the dust of the earth will also count your seed.”

“There are some, King Gelon, who think that the number of the
sands is infinite in multitude; and I mean by sand not only that
which exists about Syracuse and the rest of Sicily but also that
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which is found in every region whether inhabited or uninhabited.
" Again there are some who, without regarding it as infinite, yet
think that no number has been named which is great enough to
+ exceed its multitude. And it is clear that they who hold this view,
if they imagined a mass made up of sand in other respects as
large as the mass of the earth, including in it all the seas and the
hollows of the earth filled up to the height equal to that of the
highest mountains, would be many times further still from rec-
ognizing that any number could be expressed which exceeded the
multitude of the sand so taken. But I will try to show you, by
means of geometrical proofs which you will be able to follow,
that, of the numbers named by me and given in the work which
I sent to Zeuxippus, some exceed not only the number of the mass
of sand equal in size to the earth filled up in the way described,
but also that of a mass equal in size to the universe.”
{Archimedes: The Sand Reckoner)

Now this universe of Archimedes was a sphere limited by the
fixed stars, This sphere he estimated to be of a diameter equal to
10,000 earth-diameters. Assuming the number of grains of sand
which would fill a poppy seed as 10,000, and the diameter of the
earth not greater than 10,000 miles (300,000 stadia), he found
for the grains of sand that would fill the universe a fabulous
number which in our numeration would be expressed in 52 dig-
its. To express this number Archimedes invented a new unit, the
octade, which corresponded to our 100,000.

The history of the attempts to square the circle will furnish
another example. The problem in its original form was to con-
struct by ruler and compass a square of an area equal to that of
a given circle. Now, it is possible to construct a square equivalent
to an inscribed regular polygon of say 8 sides. On the other hand
it is observed that if we increase the number of sides to 16, 32,
64, etc. we shall approximate the area of the circle more and
more closely. Now there is no doubt that some of the Greek
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geometers regarded this doubling process not as an approxima-
tion but as a means of attaining the circle, i.e., they thought if
they could continue this process long enough they would even-
tually reach the ultimate polygon which would coincide with the
circle at all points.

It is a plausible hypothesis that the early conception of
infinity was not the uncountable, but the yet-uncounted. The
last number meant patience and perseverance, and man seemed
to be lacking in these qualities. It was of the same order of things
as reaching heaven in the story of the Tower of Babel. The last
number, like the heavens, belonged to God. In His jealous wrath
He would confound the tongues of the ambitious builders.

This confusion of tongues persists to this day. Around infinity
have grown up all the paradoxes of mathematics: from the argu-
ments of Zeno to the antimonies of Kant and Cantor. This story
we shall tell in another chapter. What concerns us here is that
these paradoxes were instrumental in creating a more critical
attitude towards the foundations of arithmetic. For, since the
properties of whole numbers form the basis of mathematics, if
these properties can be proved by the rules of formal logic, then
all of mathematics is a logical discipline. If, however, logic is
insufficient to establish these properties, then mathematics is
founded on something more than mere logic: its creative power
relies on that elusive, intangible thing which is called human
intuition,

Let there be no misunderstanding! It is not the validity of
these properties of number which is at stake; the issue is the
validity of the arguments which purport to prove the validity of
these properties. The questions that have been at issue ever since
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the foundations of mathematics were submitted to this searching
analysis, the.questions which have split the leading mathemati-
cal thinkers into two contending camps, intuitionists vs. formal-
ists, are these: What constitutes a mathematical proof? What is
the nature of reasoning generally and mathematical reasoning in
particular? What is meant by mathematical existence?

Now, the laws of sound reasoning are as old as the hills. They
were formulated in a systematic manner by Aristotle, but were
known long before him. Why, they are the very skeleton of the
human intellect: every intelligent man has occasion to apply
these laws in his daily pursuits. He knows, that in order to reason
soundly, he must first define his premises without ambiguity,

" then through a step-by-step application of the canons of logic he

will eventually arrive at a conclusion which is the unique conse-
quence of the logical process he used in reaching it.

"If this conclusion does not tally with the facts as we observe
them, then the first step is to find out whether we applied these
canons correctly. This is not the place to analyze the validity of
these canons. Not that they have been spared the scorching fire
of this critical age! Quite the contrary: one of them is, indeed,
the center of a controversy which has been raging for a quarter
of a century and which shows no sign of abatinig. However, this
is a story by itself and it will be told in its proper place.

If it is found that the canons of logic were applied correctly,
then the discrepancy, if there be a discrepancy, may mean that
there is something wrong with our premises. There may be an
inconsistency lurking somewhere in our assumptions, or one of
our premises may contradict another.
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Now, to establish a set of assumptions for any particular
body of knowledge is not an easy task. It requires not only acute
analytical judgment, but great skill as well. For, in addition to
this freedom from contradiction, it is desired that each assump-
tion should be independent of all the others, and that the whole
system be exhaustive, i.e., completely cover the question under
investigation. The branch of mathematics which deals with such
problems is called axiomatics and has been cultivated by such
men as Peano, Russell and Hilbert. In this manner logic, for-
merly a branch of philosophy, is being gradually absorbed into
the body of mathematics.

Returning to our problem, suppose that we have examined
our premises and have found them free from contradictions.
Then we say that our conclusion is logically flawless. If, however,
this conclusion does not agree with the observed facts, we know
that the assumptions we have made do not fit the concrete prob-
lem to which they were applied. There is nothing wrong with the
tailoring of the suit. If it bulges in some spots and cracks in oth-
ers, it is the fault of the fitter.

'

The process of reasoning just described is called deductive, Tt con-
sists in starting from very general properties, which take the form
of definitions, postulates or axioms, and in deriving from these, by
means of the canons of logic, statements concerning things or
circumstances which would occur in particular instances.

The process of deduction is characteristic of mathematical
reasoning. It has found a nearly complete realization in geome-
try, and for this reason the logical structure of geometry has
been the model for all exact sciences,

Quite different in its nature is the other method used in
scientific investigation: induction. It is generally described as

4
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proceeding from the particular to the general. It is the result ?f
observation and experience. To discover a property of a cel:tam
class of objects we repeat the observation or tests as many tum?s
as feasible, and under circumstances as nearly similar as poss'1—
ble. Then it may happen that a certain definite tendency .w111
manifest itself throughout our observation or experimentation.
This tendency is then accepted as the property of the class. For
example, if we subject a sufficiently large number of samples. of
lead to the action of heat, and we find that in every case melting
began when the thermometer reached 3287, ufe concludf-: t?lat
the point of fusion of lead is 328°. Back of this is the conv1ct1(')n
that no matter how many more samples we might test, the cir-
cumstances not having changed, the results would also be the
same. '

This process of induction, which is basic in all experimental
sciences, is for ever banned from rigorous mathematics. Nolt only
would such a proof of a mathematical proposition be conmdere.d
ridiculous, but even as a verification of an established tl‘utl'-l it
would be inacceptable. For, in order to prove a mathematical
praposition, the evidence of any number of cases woulc'i be insuffi-
cient, whereas to disprove a statement one example will suffice. A
mathematical proposition is true, if it leads to no logical contra-
diction, false otherwise. The method of deduction is based on the
principle of contradiction and on nothing else.

Induction is barred from mathematics and for a good reason.
Consider the quadratic expression {#* — n + 41} which I men-
tioned in the preceding chapter. We set in this expressvlon
n=1,23.... up to n = 40: in each of these cases we get a pn'me
number as the result. Shall we conclude that this expression
represents prime numbers for all values of n? Even the least
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mathematically trained reader will recognize the fallacy of such
a conclusion: yet many a physical law has been held valid on less
evidence.

Mathematics is a deductive science, arithmetic is a branch of
mathematics. Induction is inadmissible. The propositions of arith-
metic, the associative, commutative and distributive properties of
the operations, for instance, which play such a fundamental role
even in the most simple calculations, must be demonstrated by
deductive methods. What is the principle involved?

Well, this principle has been variously called mathematical
induction, and complete induction, and that of reasoning by recur-
rence. The latter is the only acceptable name, the others being
misnomers. The term induction conveys an entirely erroneous
idea of the method, for it does not imply systematic trials.

To give an illustration from a familiar field, let us imagine a
line of soldiers. Each one is instructed to convey any informa-
tion that he may have obtained to his neighbor on the right. The
commanding officer who has just entered the field wants to
ascertain whether all the soldiers know of a certain event that
has happened. Must he inquire of every soldier? Not if he is sure
that whatever any soldier may know his neighbor to the right is
also bound to know, for then if he has ascertained that the first
soldier to the left knows of the event he can conclude that all the
soldiers know of it.

The argument used here is an example of reasoning by
recurrence. It involves two stages. It is first shown that the propo-
sition we wish to demonstrate is of the type which Bertrand
Russell calls hereditary: i.e., if the proposition were true for any
member of a sequence, its truth for the successor of the member
would follow as a logical necessity. In the second place, it is
shown that the proposition is true for the first term of the
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sequence. This latter is the so-called induction step. Now in view
of its hereditary nature, the proposition, being true of the first
term, must be true of the second, and being true of the second it
must be true of the third, etc., etc. We continue in this way till we
have exhausted the whole sequence, i.e., reached its lnst member.

Both steps in the proof, the induction and the hereditary feature,
are necessary; neither is sufficient alone. The history of the two
theorems of Fermat may serve as illustration. The first theorem
concerns the statement that 22" + 1 is a prime for all values of 2.
Fermat showed by actual trial that such is the case for
n=0,1,2,3 or 4. But he could not prove the hereditary proper-
ty; and as a matter of fact, we saw that Euler disproved the
proposition by showing that it fails for #n = 5. The second theo-
rem alleges that the equation x" + y" = z" cannot be solved in
integers when n is greater than 2. Here the induction step would
consist in showing that the proposition holds for n = 3, i.e., that
the equation x* + 3 = 2% cannot be solved in whole numbers. It
is possible that Fermat had a proof of this, and if so,$here would
be one interpretation of the famous marginal note. At any rate,
this first step, we saw, was achieved by Euler. It remains to show
that the property is hereditary, i.e., assuming it true for some
value of n, say p, it should follow as a logical necessity that the
equation xP*! + yP*1 = zP*1 cannot be solved in integers.

It is significant that we owe the first explicit formulation of
the principle of recurrence to the genius of Blaise Pascal, a contem-
porary and friend of Fermat. Pascal stated the principle in a tract
called The Arithmetic Triangle which appeared in 1654. Yet it was
later discovered that the gist of this tract was contained in the cor-
respondence between Pascal and Fermat regarding a problem in
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gambling, the same correspondence which is now regarded as th
nucleus from which developed the theory of probabilities. :
It .sur'ely is a fitting subject for mystic contemplation, that
the principie of reasoning by recurrence, which is 50 ba;ic in
pul:e mathematics, and the theory of probabilities which is the
‘bas;s of all inductive sciences, were both conceivec; while devis-
Ing a scheme for the division of the stakes in an unfinished
match of two gamblers. :

ilt?w thf‘: principle of mathematical induction applies to
ll;lthmel'lc can be best illustrated in the proof that addition of
whole numbers is an associgtive operation. In symbols this means:

(1) a+(b+c)'—*(a+b)+c
) Let us analyze the Operation a + b: it means that to the num-
er 4 was added 1, to the result was added I again, and that this

process. was performed b times, Similatly a + (b + 1) means b + 1
Successive additions of 1 to a. It follows therefore that;

(2) at+(b+1)=(a+b)+1
and this is proposition (1) for the case when ¢ = 1. What we have
done, 50 far, constitutes the induction step of our proof.

No.vxlr for the hereditary feature. Let us assume that the
proposition is true for some value of & say n, Le
, e,

(3) at(b+nm)=(@+b)+n
Adding 1 to both sides:

{4) {a+(b+n)]+l={(a+b)+n]+l
which because of (2) can be written as

(5) (a+b)+(n+1)=a+[(b+n)+1]
And for the same reason is equivalent to

(6) (a+b)+(n+1)=a+{b+(n+1)]

but this is proposition (1) for the case ¢ = n+ 1.
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Thus the fact that the proposition is true for some number
f carries with it as a logical necessity that it must be true for the
successor of that number, # + 1. Being true for 1, it is therefore
true for 2; being true for 2, it is true for 3; and so on indefinitely.
The principle of mathematical induction in the more general
form in which it is here applied can be formulated as follows:
Knowing that a proposition involving a sequence is true for the
first number of the sequence, and that the assumption of its truth
for some particular member of the sequence involves as a logical
consequence the truth of the proposition for the successor of the
number, we conclude that it is true for all the numbers of the
sequence. The difference between the restricted principle as it was
used in the case of the soldiers, and the general principle as it is
used in arithmetic, is merely in the interpretation of the word all.
Let me repeat: it is not by means of the restricted, but of the
general principle of mathematical induction that the validity of
the operations of arithmetic which we took on faith when we were
first initiated into the mysteries of number has been established.

The excerpts in the following section are taken from an article by
Henri Poincaré entitled The Nature of Mathematical Reasoning.
This epoch-making essay appeared in 1894 as the first of a series
of investigations into the foundations of the exact sciences. It
was a signal for a throng of other mathematicians to inaugurate
.a movement for the revision of the classical concepts, a move-
ment which culminated in the nearly complete absorption of
logic into the body of mathematics.

The great authority of Poincaré, the beauty of his style, and
the daring iconoclasm of his ideas carried his work far beyond
the limited public of mathematicians. Some of his biographers
estimated that his writing reached half a million people, an
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audience which no mathematician before him had ever com-

manded.

Himself a creator in practically every branch of mathemat-
ics, physics, and celestial mechanics, he was endowed with 2
tremendous power of introspection which enabled him to ana-
lyze the sources of his own achievements. His penetrating mjnd
was particularly interested in the most elementary concepts,
concepts which the thick crust of human habit has made almost
impenetrable: to these concepts belong number, space, and time.

“The very possibility of a science of mathematics seems an insol-
uble contradiction. If this science is deductive only in appear-
ance, whence does it derjve that perfect rigor which 1o one dares
to doubt? I, on the contrary, all the propositions it enunciates
can be deduced one from the other by the rules of formal logic,
why is not mathematics reduced to an immense tautology? The
syllogism can teach us nothing that is essentially new, and, if
everything is to spring from the principle of identity, everything
should be capable of being reduced to it. Shall we then admit that
the theorems which fill so many volumes are nothing but devi-
ous ways of saying that A is A?

“We can, no doubt, fall back on the axioms, which are the
source of all these reasonings. If we decide that these cannot be
reduced to the principle of contradiction, if still less we see ip
them experimental facts, ... we have yet the resource of regard-
ing them as a priori judgments. This will not solve the difficulty
but only christen it ...,

“The rule of reasoning by recurrence is not reducible to the
principle of contradiction. ... Not can this rule come to us from
experience. Experience could teach us that the rule is true for the
first ten or hundred numbers; it cannot attain the indefinite
series of numbers, but only a portion of this series, more or less
long, but always limited, ' -
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“Now, if it were only a question of a portion, the principle
of contradiction would suffice; it would always allow of our
developing as many syliogisms as we wished. It is only when it is
a question of including an infinity of them in a single formula, it
is only before the infinite, that this principle of logic fails, and
here is where experience too becomes powerless ....

“Why then does this judgment force itself upon us with such
an irresistible force? It is because it is only the affirmation of the
power of the mind which knows itseif capable of conceiving the
indefinite repetition of the same act when this act is possible at
all ...

“There is, we must admit, a striking analogy between this
and the usual procedure of induction. But there is an essential
difference. Induction, as applied in the physical sciences, is always
uncertain, because it rests on the belief in a general order in the
universe, an order outside of us. On the contrary, mathematical
induction, ie., demonstration by recurrence, imposes itself as a
necessity, because it is only a property of the mind itself .._.

“We can ascend only by mathematical induction, which
alone can teach us something new. Without the aid of this induc-
tion, different from physical induction but just as fertile, deduc-
tion would be powerless to create a science.

“Observe, finally, that this induction is possible only if the
same operation can be repeated indefinitely. That is why the
theory of chess can never become a science: the different moves
of the game do not resemble one another”

The last word should go to the master and so I should have liked
to conclude this chapter, But history is no respecter of persons:
the ideas of Poincaré raised a controversy which rages to this
day. And so I must add a word of my own, not in the hope of
contributing something to the issues which have been S0
exhaustively treated by the eminent men on both sides of the
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question, but in order that the true issue may be brought out in
relief.

Reasoning by recurrence, whenever it is applied to finite
sequences of numbers, is logically unassailable. In this restricted
sense, the principle asserts that, if a proposition is of the hered-
itary type, then it is true or false of any term in the sequence if
it is true or false of the first term in the sequence,

"This restricted principle will suffice to create a finite, bounded
arithmetic. For instance, we could terminate the natural
sequence at the physiological or psychological limits of the
counting process, say 1,000,000. In such an arithmetic addition
and multiplication, when possible, would be associative and
commutative; but the operations would not always be possible.
Such expressions as (500,000 + 500,001) or (1000 x 1001) would
be meaningless, and it is obvious that the number of meaning-
less cases would far exceed those which have a meaning. This
restriction on integers would cause a corresponding restriction
on fractions; no decimal fraction could have more than 6 places,
and the conversion of such a fraction as 1/3 into a decimal frac-
tion would have no meaning. Indefinite divisibility would have
no more meaning than indefinite growth, and we would reach
the indivisible by dividing any object into a million equal parts.

A similar situation would arise in geometry if instead of
conceiving the plane as indefinitely extending in all direction we
should limit ourselves to a bounded region of the plane, say a cir-
cle. In such a bounded geometry the intersection of two
lines would be a matter of probability; two lines taken at ran-
dom would not determine an angle; and three lines taken at
random would not determine a triangle.

Yet, not only would such a bounded arithmetic and such a
bounded geometry be logically impregnable, but strange though

The Last Number 77

it may seem at first, they would be closer to the reality of our
senses than are the unbounded varieties which are the heritage
of the human race.

:

i
The restricted principle of mathematical induction involves a
finite chain of syllogisms, each consistent in itself: for this rea-
son the principle is a consequence of classical logic.

But the method used in the demonstrations of arithmetic, the
general principle of complete induction, goes far beyond the con-
fines imposed by the restricted principle. It is not content to say
that a proposition true for the number 1 is true for all numbers,
provided that if true for any number it is true for the successor of
this number. It tacitly asserts that any number has a successor.

This assertion is not a logical necessity, for it is not a conse-
quence of the laws of classical logic. This assertion does not
impose itself as the only one conceivable, for its opposite, the
postulation of a finite series of numbers, leads to a bounded
arithmetic which is just as tenable. This assertion is not derived
from the immediate experience of our senses, for all our experi-
ence proclaims its falsity. And finally this assertion is #not a con-
sequence of the historical development of the experimental
sciences, for all the latest evidence points to a bounded universe,
and in the light of the latest discoveries in the structure of the
atom, the infinite divisibility of matter must be declared a myth.

And yet the concept of infinity, though not imposed upon us
either by logic or by experience, is a mathematical necessity. What
is, then, behind this power of the mind to conceive the indefinite
repetition of an act when this act is once possible? To this ques-
tion I shall return again and again throughout this study.




